Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
基本信息
- 批准号:2210320
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Control and optimization need to be conducted simultaneously in numerous applications: smart grids, transportation networks, cooperative robotics, healthcare, and other autonomous systems interacting via wireless or physically-linked communications. These two tasks are typically treated distinctly, approached by independent designs. As a result, the two tasks interfere with one another and require performance compromises in at least of the two. For instance, optimality is obtained, but slowly, or convergence is rapid, but to suboptimal motions. A deep integration of control and optimization holds great promise. The integration is made difficult by the surge in complexity of contemporary control systems, reflected in the dynamic order, model uncertainty, and unreliable networking. The key challenge for concurrently running the mutually interfering optimization and control is the stability of the overall system or, if stability is ensured, the convergence rate. The control-optimization interference has been the hallmark of both classical adaptive control (controller-estimator interference) and extremum seeking (optimizer-controller interference), which are special cases of concurrent control and optimization. This project will advance the mathematical foundations of distributed optimization-based control and develop new tools and methods for real-time distributed optimization-based control design of large-scale and nonlinear uncertain systems. The methodology will be validated by means of cooperative robotic networks.The tools developed in this project, for real-time distributed optimization-based control algorithms for large-scale nonlinear systems with uncertainties, are of transformative nature. The algorithms designed will be applicable to heretofore intractable large-scale systems, including uncertain networked nonlinear systems and robotic networks described by Euler-Lagrange equations. To de-conflict the entanglement of optimization and control, the PIs pursue three research tasks: (1) the synthesis of distributed optimization algorithms that are robust to uncertainties, (2) the design of tracking controllers for each local system to follow in real time the desired output that aims to globally minimize certain global cost, and (3) the integration of optimization and control algorithms for global convergence of optimization algorithms and stability of the closed-loop network. The project builds on the PIs’ foundational contributions in nonlinear small-gain theory, fortified uncertainty-attenuating controllers and estimators for modular adaptive control design, and on their complementary skillsets in learning-based control and in real-time optimization by extremum seeking. The deliverable is a controller-optimizer co-design with a greatly enlarged applicability, in terms of the generality of the nonlinear plants and the achieved robustness and adaptivity, as compared to current methods which rely on linearly-bounded interactions among the modules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
控制和优化只需在许多应用中进行:智能电网,运输网络,合作机器人技术,医疗保健以及其他通过无线或物理链接的通信进行交互的自主系统。这两个任务通常通过独立设计进行明显处理。结果,这两个任务彼此干扰,并且至少在两者中都需要绩效妥协。例如,获得最佳性,但缓慢或收敛速度很快,但要屈服于次优的运动。控制和优化的深层整合具有巨大的希望。当代控制系统的复杂性激增使集成变得困难,这反映在动态顺序,模型不确定性和不可靠的网络中。同时运行相互干扰优化和控制的主要挑战是整体系统的稳定性,或者,如果确保稳定性,则收敛速率。控制性优化干扰一直是经典自适应控制(控制器 - 估计器干扰)和超级寻求(优化器控制器干扰)的标志,这是并发控制和优化的特殊情况。该项目将推动基于分布式优化的控制的数学基础,并开发新的工具和方法,用于实时分布式优化的大规模和非线性不确定系统的控制设计。该项目中开发的工具用于实时分布式优化的控制算法,用于具有不确定性的大规模非线性系统,具有变革性的性质。设计的算法将适用于迄今为止棘手的大规模系统,包括不确定的网络非线性系统和Euler-Lagrange方程描述的机器人网络。为了消除对优化和控制的纠缠,PI购买了三个研究任务:(1)分布式优化算法的合成,对不确定性具有可靠性,(2)每个本地系统的跟踪控制器的设计,以实时遵循的每个本地系统的设计,旨在实时的输出,旨在全球化的整体成本和(3)的整体成本和(3)的整合性和(3)的整合性,以及(3)和闭环网络的稳定性。该项目以非线性小增益理论的基本贡献为基础,强化了模块化自适应控制设计的不确定性侵入控制器和估计器,以及其在基于学习的控制方面的完整技能以及实时寻求的实时优化。与当前的方法相比,可交付的可交付者是一种控制型射击器共同设计,其适用性大大提高,其一般性以及实现的鲁棒性和适应性,与当前依赖于模块线性互动的方法相比,该奖项之间的奖励是NSF的法定任务,反映了通过评估的诚实的依据,该奖项已被认为是诚实的构成者的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhong-Ping Jiang其他文献
Distributed Global Output-Feedback Control for a Class of Euler–Lagrange Systems
一类欧拉-拉格朗日系统的分布式全局输出反馈控制
- DOI:
10.1109/tac.2017.2696705 - 发表时间:
2017-08 - 期刊:
- 影响因子:6.8
- 作者:
Qingkai Yang;Hao Fang;Jie Chen;Zhong-Ping Jiang;Ming Cao - 通讯作者:
Ming Cao
A Small-Gain Approach to Robust Event-Triggered Control of Nonlinear Systems
非线性系统鲁棒事件触发控制的小增益方法
- DOI:
10.1109/tac.2015.2396645 - 发表时间:
2015-01 - 期刊:
- 影响因子:6.8
- 作者:
Tengfei. Liu;Zhong-Ping Jiang - 通讯作者:
Zhong-Ping Jiang
Agallolides A-M, including two rearranged ent-atisanes featuring a bicyclo[3.2.1]octane motif, from the Chinese Excoecaria agallocha
Agallolides A-M,包括两个重排的 ent-atisane,具有双环[3.2.1]辛烷基序,来自中国 Excoecaria agallocha
- DOI:
10.1016/j.bioorg.2020.104206 - 发表时间:
2020 - 期刊:
- 影响因子:5.1
- 作者:
Zhong-Ping Jiang;Yi Yu;Li Shen - 通讯作者:
Li Shen
Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
用于遥感图像超分辨率的多注意生成对抗网络
- DOI:
10.1109/tgrs.2022.3180068 - 发表时间:
2021-07 - 期刊:
- 影响因子:8.2
- 作者:
Meng Xu;Wang Zhihao;Jiasong Zhu;Zhong-Ping Jiang;Sen Jia - 通讯作者:
Sen Jia
Hierarchical fusion of optical and dual-polarized SAR on impervious surface mapping at city scale
光学和双偏振 SAR 的分层融合在城市尺度不透水表面测绘上的应用
- DOI:
10.1016/j.isprsjprs.2021.12.008 - 发表时间:
2022-02 - 期刊:
- 影响因子:12.7
- 作者:
Genyun Sun;Ji Cheng;Aizhu Zhang;Zhong-Ping Jiang;Yanjuan Yao;Zhijun Jiao - 通讯作者:
Zhijun Jiao
Zhong-Ping Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhong-Ping Jiang', 18)}}的其他基金
Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
- 批准号:
2227153 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
- 批准号:
2009644 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Learning-based Adaptive Optimal Control Principles for Human Movements
基于学习的人体运动自适应最优控制原理
- 批准号:
1903781 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems
连续时间随机系统的受生物学启发的鲁棒自适应动态规划
- 批准号:
1501044 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Hybrid Small-Gain Theorems for Nonlinear Networked and Quantized Control Systems
合作研究:非线性网络和量化控制系统的混合小增益定理
- 批准号:
1230040 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems
AIS:复杂系统的近似动态规划与现代非线性控制的纠缠
- 批准号:
1101401 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New Tools for Nonlinear Control Systems Analysis and Synthesis
合作研究:非线性控制系统分析与综合的新工具
- 批准号:
0906659 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nonlinear Ship Control: An Opportunity for Applied Mathematicians
非线性船舶控制:应用数学家的机会
- 批准号:
0504462 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Control of complex nonlinear systems with applications
中美合作研究:复杂非线性系统控制及其应用
- 批准号:
0408925 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Robust Nonlinear Control: Problems and Challenges from Communication Networks
职业:鲁棒非线性控制:通信网络的问题和挑战
- 批准号:
0093176 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Salary Programs