Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
基本信息
- 批准号:2227153
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The gradual deployment of self-driving cars will inevitably lead to the emergence of a new important class of cyber-physical-human systems where autonomous vehicles interact with human-driven vehicles via on-board sensors or vehicle-to-vehicle communications. Reinforcement learning along with control theory can help meet the safety requirements for real-time decision making and Level 5 autonomy in self-driving vehicles. However, it is widely known that conventional reinforcement learning policies are vulnerable to adversarial or non-adversarial perturbations to their observations, similar to adversarial examples for classifiers and/or reward (packet) drops of the learning. Such issues are exacerbated by concerns of addressing resiliency as the use of open communication and control platforms for autonomy becomes essential, and as the industry continues to invest in such systems. Decision making mechanisms, designed to incorporate agility with the help of reinforcement learning, allow self-adaptation, self-healing, and self-optimization. This research will contribute and unify the body of knowledge of several diverse fields including reinforcement learning, security, automatic control, and transportation for resilient autonomy with humans-in-the-loop.In this project, to counter action and observation manipulation as well as reward drops, the principal investigators will leverage proactive switching policies that aim (i) to provide robustness to adversarial inputs and reward drops in the closed-loop reinforcement learning mechanisms, (ii) to increase the cost of manipulation by deception, (iii) to limit the exposure of vulnerable actions and observations, and (iv) to provide stability, optimality, and robustness guarantees. Ultimately, the investigators will develop fundamental contributions to each of the above-mentioned fields and amalgamate these fields to provide a unique synthesis framework. The outcomes of this project will increase levels of confidence in autonomous technologies from ethical perspectives by providing an underpinning for curtailing accidents. The proposed framework can be extended to other key enablers of the global economy, including smart and connected cities, healthcare, and networked actions of smart systems while decreasing environmental pollution and minimizing the adverse environmental impacts on human health. The project will train the next generation of students from various levels, ages, and cultures through well-coordinated, level appropriate involvement in research and educational activities while providing a unique opportunity for the students to appreciate efficient, autonomous, and low-cost designs. This project will also contribute to future engineering curricula, pursue a substantial integration of research and education, and provide opportunities to engage students from the underrepresented group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶汽车的逐步部署将不可避免地导致一类新的重要的网络-物理-人类系统的出现,在这些系统中,自动驾驶车辆通过车载传感器或车与车之间的通信与人类驾驶的车辆互动。强化学习和控制理论可以帮助满足自动驾驶车辆的实时决策和5级自主的安全要求。然而,众所周知,传统的强化学习策略容易受到观测的对抗性或非对抗性扰动,类似于分类器和/或学习的奖励(包)丢弃的对抗性例子。随着使用开放的通信和控制平台实现自主变得至关重要,以及该行业继续投资于此类系统,人们对解决复原力的担忧加剧了这类问题。决策机制旨在结合敏捷性和强化学习的帮助,允许自我适应、自我修复和自我优化。这项研究将有助于和统一几个不同领域的知识体系,包括强化学习、安全、自动控制和运输,以实现人在回路中的弹性自主。在这个项目中,为了对抗动作和观察操纵以及奖赏下降,主要研究人员将利用主动切换策略,目标是(I)在闭环系统强化学习机制中为对抗性输入和奖赏下降提供稳健性,(Ii)通过欺骗增加操纵的成本,(Iii)限制易受攻击的动作和观察的暴露,以及(Iv)提供稳定性、最优性和稳健性保证。最终,研究人员将对上述每个领域做出基本贡献,并将这些领域合并,以提供一个独特的综合框架。该项目的成果将从伦理角度提高人们对自主技术的信心,为减少事故提供基础。拟议的框架可以扩展到全球经济的其他关键推动因素,包括智能和互联城市、医疗保健以及智能系统的网络行动,同时减少环境污染,最大限度地减少环境对人类健康的不利影响。该项目将通过良好协调、水平适当的参与研究和教育活动,培养来自不同水平、年龄和文化的下一代学生,同时为学生提供一个独特的机会,让他们欣赏高效、自主和低成本的设计。该项目还将有助于未来的工程课程,追求研究和教育的实质性整合,并提供机会让来自代表性不足群体的学生参与进来。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Based Actuator Selection for Optimal Control Allocation
基于数据的执行器选择以实现最佳控制分配
- DOI:10.1109/cdc51059.2022.9992848
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fotiadis, Filippos;Vamvoudakis, Kyriakos G.;Jiang, Zhong-Ping
- 通讯作者:Jiang, Zhong-Ping
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhong-Ping Jiang其他文献
Hierarchical fusion of optical and dual-polarized SAR on impervious surface mapping at city scale
光学和双偏振 SAR 的分层融合在城市尺度不透水表面测绘上的应用
- DOI:
10.1016/j.isprsjprs.2021.12.008 - 发表时间:
2022-02 - 期刊:
- 影响因子:12.7
- 作者:
Genyun Sun;Ji Cheng;Aizhu Zhang;Zhong-Ping Jiang;Yanjuan Yao;Zhijun Jiao - 通讯作者:
Zhijun Jiao
Agallolides A-M, including two rearranged ent-atisanes featuring a bicyclo[3.2.1]octane motif, from the Chinese Excoecaria agallocha
Agallolides A-M,包括两个重排的 ent-atisane,具有双环[3.2.1]辛烷基序,来自中国 Excoecaria agallocha
- DOI:
10.1016/j.bioorg.2020.104206 - 发表时间:
2020 - 期刊:
- 影响因子:5.1
- 作者:
Zhong-Ping Jiang;Yi Yu;Li Shen - 通讯作者:
Li Shen
Distributed Global Output-Feedback Control for a Class of Euler–Lagrange Systems
一类欧拉-拉格朗日系统的分布式全局输出反馈控制
- DOI:
10.1109/tac.2017.2696705 - 发表时间:
2017-08 - 期刊:
- 影响因子:6.8
- 作者:
Qingkai Yang;Hao Fang;Jie Chen;Zhong-Ping Jiang;Ming Cao - 通讯作者:
Ming Cao
A Small-Gain Approach to Robust Event-Triggered Control of Nonlinear Systems
非线性系统鲁棒事件触发控制的小增益方法
- DOI:
10.1109/tac.2015.2396645 - 发表时间:
2015-01 - 期刊:
- 影响因子:6.8
- 作者:
Tengfei. Liu;Zhong-Ping Jiang - 通讯作者:
Zhong-Ping Jiang
Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
用于遥感图像超分辨率的多注意生成对抗网络
- DOI:
10.1109/tgrs.2022.3180068 - 发表时间:
2021-07 - 期刊:
- 影响因子:8.2
- 作者:
Meng Xu;Wang Zhihao;Jiasong Zhu;Zhong-Ping Jiang;Sen Jia - 通讯作者:
Sen Jia
Zhong-Ping Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhong-Ping Jiang', 18)}}的其他基金
Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks
合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用
- 批准号:
2210320 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
- 批准号:
2009644 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Learning-based Adaptive Optimal Control Principles for Human Movements
基于学习的人体运动自适应最优控制原理
- 批准号:
1903781 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems
连续时间随机系统的受生物学启发的鲁棒自适应动态规划
- 批准号:
1501044 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Hybrid Small-Gain Theorems for Nonlinear Networked and Quantized Control Systems
合作研究:非线性网络和量化控制系统的混合小增益定理
- 批准号:
1230040 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems
AIS:复杂系统的近似动态规划与现代非线性控制的纠缠
- 批准号:
1101401 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: New Tools for Nonlinear Control Systems Analysis and Synthesis
合作研究:非线性控制系统分析与综合的新工具
- 批准号:
0906659 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Nonlinear Ship Control: An Opportunity for Applied Mathematicians
非线性船舶控制:应用数学家的机会
- 批准号:
0504462 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research: Control of complex nonlinear systems with applications
中美合作研究:复杂非线性系统控制及其应用
- 批准号:
0408925 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Robust Nonlinear Control: Problems and Challenges from Communication Networks
职业:鲁棒非线性控制:通信网络的问题和挑战
- 批准号:
0093176 - 财政年份:2001
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant