Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients

具有非全局 Lipschitz 连续系数的随机微分方程的数值逼近

基本信息

项目摘要

Stochastic differential equations (SDEs) are used in all areas for modeling dynamics with stochastic noise. As applied SDEs typically admit no explicit solution, it is crucial to solve SDEs numerically. The majority of applied SDEs have superlinearly growing coefficients and, therefore, do not satisfy the assumptions of the bulk of the literature. We have recently shown that algorithms developed for the case of global Lipschitz coefficients do in general not transfer to the non-global Lipschitz case without modifications. For this reason, we investigate the convergence behavior of suitably modified explicit Euler methods. More precisely we develop a thorough theory of numerical methods which are recursively defined as a general function of the previous state, of the time increment and of the increment of the Brownian motion. The convergence theory will apply to most of the stochastic ordinary differential equations with locally Lipschitz continuous coefficients having finite moments. Establishing the order of convergence will require additional assumptions such as local smoothness. Our main approach is to bring forward the successful Lyapunov technique to the theory of numerical approximations. Moreover, we extend our finite-dimensional results to stochastic partial differential equations. In particular we study a modified version of the exponential Euler method which hasrecently been proposed for the case of additive noise and which has a rather good order of convergence. An additional objective of this project is to publish our results as monograph „Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients".
随机微分方程(SDEs)被用于所有领域的建模动态随机噪声。由于应用的偏微分方程通常不承认显式的解决方案,这是至关重要的求解偏微分方程的数值。大多数应用的随机微分方程具有超线性增长系数,因此,不满足大部分文献的假设。我们最近表明,算法开发的情况下,全球Lipschitz系数一般不转移到非全球Lipschitz的情况下,没有修改。为此,我们研究适当修改的显式欧拉方法的收敛性。更确切地说,我们开发了一个彻底的理论的数值方法,递归地定义为一个一般功能的前一个国家,的时间增量和增量的布朗运动。收敛理论将适用于大多数的随机常微分方程的局部Lipschitz连续系数有限的时刻。建立收敛的顺序将需要额外的假设,如局部平滑。我们的主要方法是将成功的李雅普诺夫方法引入到数值逼近理论中。此外,我们将有限维结果推广到随机偏微分方程。特别地,我们研究了指数欧拉方法的一个修正版本,它最近被提出用于加性噪声的情况,并且具有相当好的收敛阶.该项目的另一个目标是将我们的结果作为专著“具有非全局Lipschitz连续系数的随机微分方程的数值逼近”发表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Hutzenthaler其他文献

Professor Dr. Martin Hutzenthaler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Hutzenthaler', 18)}}的其他基金

On numerical approximations of high-dimensional nonlinear parabolic partial differential equations and of backward stochastic differential equations
高维非线性抛物型偏微分方程和倒向随机微分方程的数值逼近
  • 批准号:
    381158774
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The effect of natural selection on genealogies
自然选择对谱系的影响
  • 批准号:
    285170854
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Evolution of altruistic defense traits in structured populations
结构化人群中利他防御特征的演变
  • 批准号:
    221620745
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Competing selective sweeps
竞争选择性扫描
  • 批准号:
    209410416
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Deep neural networks overcome the curse of dimensionality in the numerical approximation of stochastic control problems and of semilinear Poisson equations
深度神经网络克服了随机控制问题和半线性泊松方程数值逼近中的维数灾难
  • 批准号:
    464101154
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

非牛顿流方程(组)及其随机模型无穷维动力系统的研究
  • 批准号:
    11126160
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
  • 批准号:
    2306023
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
  • 批准号:
    2153866
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
An Investigation into Coupling a Stochastic Approximation with a Pseudo-Marginal Sampler
随机近似与伪边际采样器耦合的研究
  • 批准号:
    NE/X008347/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Decentralized stochastic control of multi-agent teams: approximation, learning, and signaling
多智能体团队的去中心化随机控制:逼近、学习和信号发送
  • 批准号:
    RGPIN-2021-03511
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Random fields: non-Gaussian stochastic models and approximation schemes
随机场:非高斯随机模型和近似方案
  • 批准号:
    DP220101680
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
  • 批准号:
    EP/W004070/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A new stochastic model and diffusion approximation to analyze archaological and ethnographic data
用于分析考古和民族志数据的新随机模型和扩散近似
  • 批准号:
    21K03357
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decentralized stochastic control of multi-agent teams: approximation, learning, and signaling
多智能体团队的去中心化随机控制:逼近、学习和信号发送
  • 批准号:
    RGPIN-2021-03511
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Non-perturbative spectral analysis of quantum field theory by stochastic analysis and semi-classical approximation
通过随机分析和半经典近似对量子场论进行非微扰谱分析
  • 批准号:
    20H01808
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and application of the finite state Markov chain approximation method for control systems described by stochastic differential equations
随机微分方程控制系统有限状态马尔可夫链逼近方法的发展与应用
  • 批准号:
    20K11989
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了