Local Cohomology, the Frobenius Endomorphism, D-Module Theory, and Invariant Theory
局部上同调、Frobenius 自同态、D 模理论和不变理论
基本信息
- 批准号:1501404
- 负责人:
- 金额:$ 12.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is well known that many of the geometric objects encountered in daily life can be described using equations. Furthermore, fundamental and interesting objects can often be described using polynomial equations (for example, consider the familiar equation for a circle). Though polynomials are based upon some of the most elementary operations (namely, addition and multiplication), they are able to describe a rich variety of phenomena, and can sometimes behave in mysterious and complicated ways. This research project concerns the mathematical field of commutative algebra, that is, the study of polynomial equations. This field has many important applications; for example, it is used in cryptography and physics. The broad goal of this project is to understand mathematical structures that arise in the study of polynomial equations. Many of the methods employed in the research project involve techniques from other areas of mathematics. The goal of this project is to advance the understanding of some fundamental objects in commutative algebra. In particular, it aims to shed light on the structure of local cohomology modules, rings of mixed characteristic, Bernstein-Sato polynomials, and singularities in characteristic p. The investigator is especially motivated by the deep connections between these topics. The project seeks to do the following: (1) to study local cohomology modules using group actions and D-module theory; (2) to use the Lyubeznik numbers (and variants introduced recently by the investigator and collaborator) to compare rings of equal characteristic and mixed characteristic, and to understand rings of mixed characteristic; and (3) to find explicit formulas for F-thresholds and use these to produce roots of the Bernstein-Sato polynomial. The techniques employed use invariant theory, noncommutative algebra, and combinatorics.
众所周知,日常生活中遇到的许多几何物体都可以用方程来描述。 此外,基本和有趣的对象通常可以使用多项式方程来描述(例如,考虑熟悉的圆方程)。 虽然多项式是基于一些最基本的运算(即加法和乘法),但它们能够描述各种各样的现象,有时可以以神秘而复杂的方式表现。 本研究计画是关于交换代数的数学领域,也就是多项式方程式的研究。 这个领域有许多重要的应用;例如,它用于密码学和物理学。 该项目的主要目标是了解在多项式方程研究中出现的数学结构。 在研究项目中采用的许多方法涉及其他数学领域的技术。 这个项目的目标是推进交换代数中一些基本对象的理解。 特别是,它的目的是阐明结构的局部上同调模,环的混合特征,伯恩斯坦-佐藤多项式,和奇异性的特征p.调查特别是动机这些主题之间的深刻联系。 本项目的主要目的是:(1)利用群作用和D-模理论研究局部上同调模;(2)利用Lyubeznik数(以及研究者和合作者最近介绍的变体)比较相等特征和混合特征的环,并了解混合特征的环;以及(3)找到F-阈值的显式公式并使用这些公式来产生Bernstein-Sato多项式的根。 所采用的技术使用不变理论,非交换代数和组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Witt其他文献
Differences in outcomes after emergency general surgery between Hispanic subgroups in the New Jersey State Inpatient Database (2009–2014): The Hispanic population is not monolithic
- DOI:
10.1016/j.amjsurg.2021.03.057 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Lydia R. Maurer;Sarah Rahman;Numa Perez;Benjamin G. Allar;Emily Witt;Jackelyn Moya;Margaret S. Pichardo;Minerva Angelica Romero Arenas;Tarsicio Uribe-Leitz;Tanujit Dey;Regan W. Bergmark;Gregory Peck;Gezzer Ortega - 通讯作者:
Gezzer Ortega
Modulation of diabetic wound healing using carbon monoxide gas-entrapping materials
使用一氧化碳气体截留材料调节糖尿病伤口愈合
- DOI:
10.1016/j.device.2024.100320 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Witt;Alexander J. Leach;Jianling Bi;Sam Hatfield;Alicia T. Cotoia;Megan K McGovern;Arielle B Cafi;Ashley C Rhodes;Austin N. Cook;Slyn Uaroon;Bishal Parajuli;Jinhee Kim;Vivian R Feig;Alexandra Scheiflinger;Ikenna Nwosu;Miguel Jimenez;Mitchell C. Coleman;Marisa R. Buchakjian;Dustin E. Bosch;M. Tift;Giovanni Traverso;Leo E. Otterbein;James D. Byrne - 通讯作者:
James D. Byrne
Health care...associated infections studies project: An <em>American Journal of Infection Control</em> and National Health Care Safety Network data quality collaboration case study..÷Laboratory-identified event reporting validation
- DOI:
10.1016/j.ajic.2023.04.172 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Nigel Lewis;Denise Leaptrot;Emily Witt;Henrietta Smith;Joan N. Hebden;Marc-Oliver Wright - 通讯作者:
Marc-Oliver Wright
Multiplexed live-cell imaging for drug responses in patient-derived organoid models of cancer
多重活细胞成像用于患者来源的癌症类器官模型中的药物反应
- DOI:
10.1101/2023.11.15.567243 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaitriana E. Colling;Emily L. Symons;Lorenzo Buroni;Hiruni K. Sumanisiri;Jessica Andrew;Emily Witt;Haley A. Losh;Abigail M. Morrison;Kimberly K. Leslie;Christopher J. Dunnill;Johann S de Bono;Kristina W. Thiel - 通讯作者:
Kristina W. Thiel
Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials
使用气体包封材料增强胰腺癌免疫疗法的效果
- DOI:
10.1016/j.biomaterials.2025.123097 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:12.900
- 作者:
Jianling Bi;Emily Witt;Megan K. McGovern;Arielle B. Cafi;Sri Naga Swetha Tunuguntla;Alicia T. Cotoia;Juan Antonio Raygoza Garay;Kyle R. Balk;Lilly Boge;Samual Hatfield;Ryan Courtney;Juan Du;Carlos H.F. Chan;Yi Huang;Vanessa A. Voltarelli;Matthew G. Smith;Adam Mailloux;Dustin E. Bosch;Michael S. Tift;Leo E. Otterbein;James D. Byrne - 通讯作者:
James D. Byrne
Emily Witt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Witt', 18)}}的其他基金
CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
- 批准号:
1945611 - 财政年份:2020
- 资助金额:
$ 12.7万 - 项目类别:
Continuing Grant
Local Cohomology, the Frobenius Endomorphism, D-Module Theory, and Invariant Theory
局部上同调、Frobenius 自同态、D 模理论和不变理论
- 批准号:
1623035 - 财政年份:2015
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 12.7万 - 项目类别:
Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
- 批准号:
2883661 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Studentship
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Continuing Grant
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Research Grant
Research on commutative rings via etale cohomology theory
基于etale上同调理论的交换环研究
- 批准号:
23K03077 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 12.7万 - 项目类别:
Standard Grant
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 12.7万 - 项目类别:
Discovery Grants Program - Individual