CAREER: New Frontiers for Frobenius, Singularity Theory, Differential Operators, and Local Cohomology
职业生涯:弗罗贝尼乌斯、奇点理论、微分算子和局部上同调的新领域
基本信息
- 批准号:1945611
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of commutative algebra provides a framework in which to study polynomial equations and their set of solutions. Given the prominent role of such equations in our society (e.g., in pure and applied math, computer science and technology, engineering, physics, biology, and chemistry), the applications of commutative algebra are broad and impactful. For example, commutative algebra is fundamental to cryptography, which many of us rely on daily, but also to genomics. This project advances the field of commutative algebra, and also trains junior scientists to develop skills relevant to a variety of scientific careers. This project also includes three initiatives focused on education, outreach and scientific leadership. These initiatives support research collaboration among women algebraists, implement an REU training program serving students from groups that are underrepresented in the STEM fields, and create new computer algebra software for research and education.This project aims to further our understanding of commutative rings and algebraic varieties using prime characteristic methods, differential operators, and local cohomology. In prime characteristic, one goal is to use the Frobenius map to study hypersurfaces by providing a better understanding of test ideals and Frobenius jumping exponents. The project also seeks effective algorithms for computing the Bernstein- Sato polynomial over the complex numbers. Another goal of the project is to investigate differential operators, and modules over them, in non-regular settings, and then apply this new theory (for example, to study multiplier ideals). Finally, the project proposes to investigate new geometric and topological properties determined by local cohomology, with an emphasis on connectedness properties of the irreducible components of a ring's spectrum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
交换代数领域提供了一个研究多项式方程及其解集的框架。 考虑到这些方程在我们社会中的突出作用(例如,在纯数学和应用数学、计算机科学和技术、工程学、物理学、生物学和化学中),交换代数的应用是广泛和有影响力的。 例如,交换代数是密码学的基础,我们中的许多人每天都依赖密码学,但也是基因组学的基础。 该项目推进了交换代数领域,并培训初级科学家发展与各种科学职业相关的技能。该项目还包括三项举措,重点是教育、外联和科学领导。 这些举措支持女性代数学家之间的研究合作,实施REU培训计划,为STEM领域代表性不足的群体的学生提供服务,并为研究和教育创建新的计算机代数软件。该项目旨在利用素特征方法,微分算子和局部上同调进一步理解交换环和代数簇。在素特征中,一个目标是通过提供对测试理想和Frobenius跳跃指数的更好理解,使用Frobenius映射来研究超曲面。 该项目还寻求有效的算法来计算伯恩斯坦-佐藤多项式的复数。 该项目的另一个目标是研究非正则设置中的微分算子及其上的模,然后应用这个新理论(例如,研究乘数理想)。 最后,该项目提出了调查新的几何和拓扑性质所确定的局部上同调,重点是连通性的一个环的频谱不可约组件的属性。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lower bounds on the F-pure threshold and extremal singularities
F 纯阈值和极值奇点的下界
- DOI:10.1090/btran/106
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kadyrsizova, Zhibek;Kenkel, Jennifer;Page, Janet;Singh, Jyoti;Smith, Karen;Vraciu, Adela;Witt, Emily
- 通讯作者:Witt, Emily
Frobenius powers
弗罗贝尼乌斯幂
- DOI:10.1007/s00209-019-02442-2
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Hernández, Daniel J.;Teixeira, Pedro;Witt, Emily E.
- 通讯作者:Witt, Emily E.
The FrobeniusThresholds package for Macaulay2
Macaulay2 的 FrobeniusThresholds 包
- DOI:10.2140/jsag.2021.11.25
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hernández, Daniel;Schwede, Karl;Teixeira, Pedro;Witt, Emily
- 通讯作者:Witt, Emily
Bernstein–Sato functional equations, V-filtrations, and multiplier ideals of direct summands
Bernstein-Sato 函数方程、V 过滤和直接被加数的乘数理想
- DOI:10.1142/s0219199721500838
- 发表时间:2022
- 期刊:
- 影响因子:1.6
- 作者:Àlvarez Montaner, Josep;Hernández, Daniel J.;Jeffries, Jack;Núñez-Betancourt, Luis;Teixeira, Pedro;Witt, Emily E.
- 通讯作者:Witt, Emily E.
Frobenius powers of some monomial ideals
一些单项式理想的 Frobenius 幂
- DOI:10.1016/j.jpaa.2019.04.015
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Hernández, Daniel J;Teixeira, Pedro;Witt, Emily E.
- 通讯作者:Witt, Emily E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Witt其他文献
Differences in outcomes after emergency general surgery between Hispanic subgroups in the New Jersey State Inpatient Database (2009–2014): The Hispanic population is not monolithic
- DOI:
10.1016/j.amjsurg.2021.03.057 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Lydia R. Maurer;Sarah Rahman;Numa Perez;Benjamin G. Allar;Emily Witt;Jackelyn Moya;Margaret S. Pichardo;Minerva Angelica Romero Arenas;Tarsicio Uribe-Leitz;Tanujit Dey;Regan W. Bergmark;Gregory Peck;Gezzer Ortega - 通讯作者:
Gezzer Ortega
Modulation of diabetic wound healing using carbon monoxide gas-entrapping materials
使用一氧化碳气体截留材料调节糖尿病伤口愈合
- DOI:
10.1016/j.device.2024.100320 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Witt;Alexander J. Leach;Jianling Bi;Sam Hatfield;Alicia T. Cotoia;Megan K McGovern;Arielle B Cafi;Ashley C Rhodes;Austin N. Cook;Slyn Uaroon;Bishal Parajuli;Jinhee Kim;Vivian R Feig;Alexandra Scheiflinger;Ikenna Nwosu;Miguel Jimenez;Mitchell C. Coleman;Marisa R. Buchakjian;Dustin E. Bosch;M. Tift;Giovanni Traverso;Leo E. Otterbein;James D. Byrne - 通讯作者:
James D. Byrne
Health care...associated infections studies project: An <em>American Journal of Infection Control</em> and National Health Care Safety Network data quality collaboration case study..÷Laboratory-identified event reporting validation
- DOI:
10.1016/j.ajic.2023.04.172 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:
- 作者:
Nigel Lewis;Denise Leaptrot;Emily Witt;Henrietta Smith;Joan N. Hebden;Marc-Oliver Wright - 通讯作者:
Marc-Oliver Wright
Multiplexed live-cell imaging for drug responses in patient-derived organoid models of cancer
多重活细胞成像用于患者来源的癌症类器官模型中的药物反应
- DOI:
10.1101/2023.11.15.567243 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kaitriana E. Colling;Emily L. Symons;Lorenzo Buroni;Hiruni K. Sumanisiri;Jessica Andrew;Emily Witt;Haley A. Losh;Abigail M. Morrison;Kimberly K. Leslie;Christopher J. Dunnill;Johann S de Bono;Kristina W. Thiel - 通讯作者:
Kristina W. Thiel
Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials
使用气体包封材料增强胰腺癌免疫疗法的效果
- DOI:
10.1016/j.biomaterials.2025.123097 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:12.900
- 作者:
Jianling Bi;Emily Witt;Megan K. McGovern;Arielle B. Cafi;Sri Naga Swetha Tunuguntla;Alicia T. Cotoia;Juan Antonio Raygoza Garay;Kyle R. Balk;Lilly Boge;Samual Hatfield;Ryan Courtney;Juan Du;Carlos H.F. Chan;Yi Huang;Vanessa A. Voltarelli;Matthew G. Smith;Adam Mailloux;Dustin E. Bosch;Michael S. Tift;Leo E. Otterbein;James D. Byrne - 通讯作者:
James D. Byrne
Emily Witt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Witt', 18)}}的其他基金
Local Cohomology, the Frobenius Endomorphism, D-Module Theory, and Invariant Theory
局部上同调、Frobenius 自同态、D 模理论和不变理论
- 批准号:
1501404 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Local Cohomology, the Frobenius Endomorphism, D-Module Theory, and Invariant Theory
局部上同调、Frobenius 自同态、D 模理论和不变理论
- 批准号:
1623035 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
- 批准号:
2339775 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
- 批准号:
2238766 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
- 批准号:
2239869 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
- 批准号:
2235233 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Bayesian Deep Learning
职业:贝叶斯深度学习的新领域
- 批准号:
2145492 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Quantum Protocols, Operator Algebras, and Property Testing
职业:量子协议、算子代数和属性测试的新领域
- 批准号:
2144219 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
- 批准号:
2146343 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Analytic Frontiers for Symmetric Cryptography
职业:对称密码学的新分析前沿
- 批准号:
2046540 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Computing on Private Data
职业:私有数据计算的新领域
- 批准号:
1942789 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Frontiers in Time Series Analysis
职业:时间序列分析的新领域
- 批准号:
1455172 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant