Local and Global Study of Automorphic Forms and Galois Representations
自守形式和伽罗瓦表示的局部和全局研究
基本信息
- 批准号:1501882
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns work in number theory, a branch of mathematics that has seen applications in cryptography and in coding theory and that has connections with physics. There have been many fruitful interactions between number theory and other areas of mathematics, as exemplified by the Langlands program and the proof of Fermat's Last Theorem. The proof of Fermat's last theorem included verification of a small part of the Langlands program, a vast web of conjectures involving disparate areas of mathematics, which, in this case, connected Galois representations and automorphic forms and the L-functions of elliptic curves. The investigator will pursue research directions that involve strong global techniques to study automorphic forms and Galois representations. These may include methods such as the trace formula, Shimura varieties, p-adically completed cohomology, or the Taylor-Wiles-Kisin patching construction. This research project will address the following topics. (1) The Langlands-Kottwitz approach to the cohomology of Shimura varieties of abelian type with good reduction in full generality; (2) Arithmetic statistics for families of automorphic representations and their L-functions; (3) The endoscopic classification for representations of local and global unitary groups that are not quasi-split; and (4) p-adic Langlands program beyond GL(2,Qp). The common theme of the investigator's research is to obtain strong consequences from these techniques via a clear understanding of interactions between local and global theories. The Langlands-Kottwitz method is a fundamental component of the Langlands program, and its completion for Shimura varieties of abelian type will not only be a milestone but also lead to further arithmetic applications. The study of families of L-functions makes a connection with random matrix theory and would shed light on families of algebraic varieties. The project on unitary groups settles an interesting case of Langlands functoriality as well as the local Langlands classification with several expected applications in arithmetic, which rely essentially on the use of (often non-quasi-split) unitary groups. The continued effort on the p-adic Langlands program aiming at general groups would have growing impact and open up new research directions.
这个研究项目涉及数论的工作,数论是数学的一个分支,在密码学和编码理论中有应用,并与物理学有联系。数论和其他数学领域之间有许多富有成效的相互作用,例如朗兰兹纲领和费马大定理的证明。费马最后定理的证明包括朗兰兹纲领的一小部分的验证,这是一个涉及不同数学领域的庞大网络,在这种情况下,连接了伽罗瓦表示和自守形式以及椭圆曲线的L函数。研究人员将追求研究方向,涉及强大的全球技术来研究自守形式和伽罗瓦表示。这些方法可能包括迹公式、志村变种、p基完全上同调或泰勒-怀尔斯-基辛修补构造。该研究项目将涉及以下主题。(1)交换型Shimura簇的上同调的Langlands-Kottwitz方法,在完全一般性中具有良好的约化;(2)自守表示族及其L-函数的算术统计;(3)不拟分裂的局部和整体酉群表示的内窥镜分类;(4)GL(2,Qp)之外的p-adic Langlands程序。研究者研究的共同主题是通过对局部和全局理论之间的相互作用的清晰理解,从这些技术中获得强有力的结果。Langlands-Kottwitz方法是Langlands程序的一个基本组成部分,它对交换型Shimura簇的完成不仅是一个里程碑,而且会导致进一步的算术应用。L-函数族的研究与随机矩阵理论有联系,并将揭示代数簇族。关于酉群的项目解决了一个有趣的朗兰兹函性的案例,以及局部朗兰兹分类在算术中的几个预期应用,这些应用基本上依赖于酉群的使用(通常是非准分裂的)。针对一般群体的p-adic Langlands计划的持续努力将产生越来越大的影响,并开辟新的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sug Woo Shin其他文献
On the sparsity of positive-definite automorphic forms within a family
- DOI:
10.1007/s11854-016-0017-9 - 发表时间:
2016-08-25 - 期刊:
- 影响因子:0.900
- 作者:
Junehyuk Jung;Sug Woo Shin - 通讯作者:
Sug Woo Shin
Compatible systems of symplectic Galois representations and the inverse Galois problem III. Automorphic construction of compatible systems with suitable local properties
- DOI:
10.1007/s00208-014-1091-x - 发表时间:
2014-09-07 - 期刊:
- 影响因子:1.400
- 作者:
Sara Arias-de-Reyna;Luis V. Dieulefait;Sug Woo Shin;Gabor Wiese - 通讯作者:
Gabor Wiese
PATCHING AND THE p-ADIC LOCAL LANGLANDS
补丁和 p-ADIC 本地 LANGLAND
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
A. Caraiani;M. Emerton;Toby Gee;D. Geraghty;Vytautas Paškūnas;Sug Woo Shin - 通讯作者:
Sug Woo Shin
Sato–Tate theorem for families and low-lying zeros of automorphic $$L$$ -functions
- DOI:
10.1007/s00222-015-0583-y - 发表时间:
2015-03-13 - 期刊:
- 影响因子:3.600
- 作者:
Sug Woo Shin;Nicolas Templier - 通讯作者:
Nicolas Templier
Sug Woo Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sug Woo Shin', 18)}}的其他基金
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
- 批准号:
2401353 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Shimura Varieties and Automorphic Forms with Arithmetic Applications
志村簇和自同构形式及其算术应用
- 批准号:
2101688 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Applications of the Trace Formula to Shimura Varieties and the Langlands Program
微量公式在志村品种和朗兰兹计划中的应用
- 批准号:
1802039 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Arithmetic Applications of the Trace Formula
迹公式的算术应用
- 批准号:
1449558 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Arithmetic Applications of the Trace Formula
迹公式的算术应用
- 批准号:
1162250 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
he Construction of Medicine v.s. Non-medicine: a Historical and Social Study of Herbs' Materiality and Knowledge Productions in the Local and Global Context
他的医学建设与。
- 批准号:
23K12073 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: NNA Research: Global changes, local impacts: Study of glacial fjords, ecosystems and communities in Greenland
合作研究:NNA 研究:全球变化,当地影响:格陵兰冰川峡湾、生态系统和社区研究
- 批准号:
2127242 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Global changes, local impacts: Study of glacial fjords, ecosystems and communities in Greenland
合作研究:NNA 研究:全球变化,当地影响:格陵兰冰川峡湾、生态系统和社区研究
- 批准号:
2127245 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Global changes, local impacts: Study of glacial fjords, ecosystems and communities in Greenland
合作研究:NNA 研究:全球变化,当地影响:格陵兰冰川峡湾、生态系统和社区研究
- 批准号:
2127243 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
An Empirical Study on Local Firms and Global Value Chains
本土企业与全球价值链的实证研究
- 批准号:
22K13408 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: NNA Research: Global changes, local impacts: Study of glacial fjords, ecosystems and communities in Greenland
合作研究:NNA 研究:全球变化,当地影响:格陵兰冰川峡湾、生态系统和社区研究
- 批准号:
2127244 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Global changes, local impacts: Study of glacial fjords, ecosystems and communities in Greenland
合作研究:NNA 研究:全球变化,当地影响:格陵兰冰川峡湾、生态系统和社区研究
- 批准号:
2127246 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Global changes, local impacts: Study of glacial fjords, ecosystems and communities in Greenland
合作研究:NNA 研究:全球变化,当地影响:格陵兰冰川峡湾、生态系统和社区研究
- 批准号:
2127241 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Study of ionospheric disturbances by coupling of global and local ionospheric numerical models
通过耦合全球和局部电离层数值模型研究电离层扰动
- 批准号:
20K04037 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional connectome pathopysiology of brain local/global network in schizophrenia: MEG study.
精神分裂症大脑局部/全局网络的功能连接组病理生理学:MEG 研究。
- 批准号:
19K08038 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




