Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
基本信息
- 批准号:2401353
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award concerns research in number theory which studies integers, prime numbers, and solutions of a system of equations over integers or rational numbers following the long tradition from ancient Greeks. In the digital age, number theory has been essential in algorithms, cryptography, and data security. Modern mathematics has seen increasingly more interactions between number theory and other areas from a unifying perspective. A primary example is the Langlands program, comprising a vast web of conjectures and open-ended questions. Even partial solutions have led to striking consequences such as verification of Fermat's Last Theorem, the Sato-Tate conjecture, the Serre conjecture, and their generalizations.The PI's projects aim to broaden our understanding of the Langlands program and related problems in the following directions: (1) endoscopic classification for automorphic forms on classical groups, (2) a formula for the intersection cohomology of Shimura varieties with applications to the global Langlands reciprocity, (3) the non-generic part of cohomology of locally symmetric spaces, and (4) locality conjectures on the mod p Langlands correspondence. The output of research would stimulate further progress and new investigations. Graduate students will be supported on the grant to take part in these projects. The PI also plans outreach to local high schools which have large under-represented minority populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项关注数论研究,研究整数,素数,以及整数或有理数方程组的解,遵循古希腊的悠久传统。在数字时代,数论在算法、密码学和数据安全中都是必不可少的。现代数学从统一的角度来看,数论与其他领域的互动越来越多。一个主要的例子是朗兰兹纲领,它包含了大量的猜想和开放式问题。甚至部分解也导致了惊人的结果,如费马大定理、佐藤-塔特猜想、塞尔猜想及其推广的验证。PI的项目旨在扩大我们对Langlands规划和相关问题的理解:(1)经典群上自同构形式的内镜分类;(2)Shimura变异体的交上同调的公式及其在全局Langlands互易中的应用;(3)局部对称空间上同调的非一般部分;(4)模p Langlands对应的局域猜想。研究成果将促进进一步的进步和新的研究。研究生将获得资助参与这些项目。PI还计划扩展到当地的高中,那里有大量未被充分代表的少数民族人口。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sug Woo Shin其他文献
Compatible systems of symplectic Galois representations and the inverse Galois problem III. Automorphic construction of compatible systems with suitable local properties
- DOI:
10.1007/s00208-014-1091-x - 发表时间:
2014-09-07 - 期刊:
- 影响因子:1.400
- 作者:
Sara Arias-de-Reyna;Luis V. Dieulefait;Sug Woo Shin;Gabor Wiese - 通讯作者:
Gabor Wiese
On the sparsity of positive-definite automorphic forms within a family
- DOI:
10.1007/s11854-016-0017-9 - 发表时间:
2016-08-25 - 期刊:
- 影响因子:0.900
- 作者:
Junehyuk Jung;Sug Woo Shin - 通讯作者:
Sug Woo Shin
PATCHING AND THE p-ADIC LOCAL LANGLANDS
补丁和 p-ADIC 本地 LANGLAND
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
A. Caraiani;M. Emerton;Toby Gee;D. Geraghty;Vytautas Paškūnas;Sug Woo Shin - 通讯作者:
Sug Woo Shin
Sato–Tate theorem for families and low-lying zeros of automorphic $$L$$ -functions
- DOI:
10.1007/s00222-015-0583-y - 发表时间:
2015-03-13 - 期刊:
- 影响因子:3.600
- 作者:
Sug Woo Shin;Nicolas Templier - 通讯作者:
Nicolas Templier
Sug Woo Shin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sug Woo Shin', 18)}}的其他基金
Shimura Varieties and Automorphic Forms with Arithmetic Applications
志村簇和自同构形式及其算术应用
- 批准号:
2101688 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Applications of the Trace Formula to Shimura Varieties and the Langlands Program
微量公式在志村品种和朗兰兹计划中的应用
- 批准号:
1802039 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Local and Global Study of Automorphic Forms and Galois Representations
自守形式和伽罗瓦表示的局部和全局研究
- 批准号:
1501882 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Arithmetic Applications of the Trace Formula
迹公式的算术应用
- 批准号:
1449558 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Arithmetic Applications of the Trace Formula
迹公式的算术应用
- 批准号:
1162250 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
- 批准号:
23K09279 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)