Non-Commutative Desingularizations and Representation Theory

非交换去奇异化和表示论

基本信息

  • 批准号:
    1502107
  • 负责人:
  • 金额:
    $ 15.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

There is a classical dictionary between geometry and algebra, dating back at least to Descartes and Fermat in the seventeenth century, which has been developed and sharpened to allow the detailed study of geometric spaces in terms of algebraic objects known as commutative rings. (Commutativity means that order of multiplication doesn't matter: x times y is equal to y times x.) As our understanding of the physical world has grown, however, in such areas as quantum mechanics, string theory, and the study of fundamental particles, we have come to understand that the fine structure of the universe is essentially non-commutative. New dictionaries are being built to understand the connections between geometry and the non-commutative world. This research project concerns non-commutative analogues of a geometric operation called resolution of singularities, which "unfolds" a pinched or creased geometry to replace it with a smooth one.The investigator will work on problems at the intersection of commutative algebra, algebraic geometry, and non-commutative algebraic geometry. The research plan involves applying tools and techniques from the representation theory of local rings, Artin algebras, and algebraic groups, to the problems of constructing non-commutative analogues of resolutions of singularities, studying their structure, and applying their existence to study further problems in representation theory. The foundations of the theory of non-commutative resolutions (NCRs) are still in active development, and this proposal would contribute to the maturation of the theory. Furthermore the investigator proposes constructions of new examples of NCRs, which would expand our understanding of the limits of the theory. Some of these new examples would rely on new constructions in geometric tilting theory over homogeneous varieties.
在几何和代数之间有一本经典的字典,至少可以追溯到17世纪的笛卡尔和费马,这本字典经过了发展和完善,可以用代数对象(称为交换环)来详细研究几何空间。(交换性意味着乘法的顺序无关紧要:x乘以y等于y乘以x。)然而,随着我们对物理世界的理解不断加深,在量子力学、弦理论和基本粒子研究等领域,我们开始认识到,宇宙的精细结构本质上是非交换的。人们正在建立新的词典来理解几何和非交换世界之间的联系。这个研究项目涉及一种称为奇点解析的几何运算的非交换类似物,它“展开”一个挤压或折痕的几何图形,将其替换为一个光滑的几何图形。研究者将研究交换代数、代数几何和非交换代数几何的交叉问题。本研究计划将局部环、Artin代数和代数群的表示理论中的工具和技术应用于构造奇异解的非交换类似物的问题,研究它们的结构,并利用它们的存在性进一步研究表示理论中的问题。非交换决议理论的基础仍在积极发展中,本文的提出将有助于非交换决议理论的成熟。此外,研究者提出了新的ncr实例的构建,这将扩大我们对理论局限性的理解。这些新例子中的一些将依赖于齐次变体的几何倾斜理论的新构造。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Leuschke其他文献

Graham Leuschke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Leuschke', 18)}}的其他基金

Annual New York State Graduate Mathematics Conference
年度纽约州研究生数学会议
  • 批准号:
    1800121
  • 财政年份:
    2018
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Methods in the Representation Theory of Local Rings
局部环表示论中的方法
  • 批准号:
    0902119
  • 财政年份:
    2009
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Methods in the Representation Theory of Local Rings
局部环表示论中的方法
  • 批准号:
    0556181
  • 财政年份:
    2006
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant

相似海外基金

Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
  • 批准号:
    2302682
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
  • 批准号:
    2302341
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
  • 批准号:
    23K03056
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
  • 批准号:
    2302430
  • 财政年份:
    2023
  • 资助金额:
    $ 15.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了