Non-Commutative Desingularizations and Representation Theory
非交换去奇异化和表示论
基本信息
- 批准号:1502107
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a classical dictionary between geometry and algebra, dating back at least to Descartes and Fermat in the seventeenth century, which has been developed and sharpened to allow the detailed study of geometric spaces in terms of algebraic objects known as commutative rings. (Commutativity means that order of multiplication doesn't matter: x times y is equal to y times x.) As our understanding of the physical world has grown, however, in such areas as quantum mechanics, string theory, and the study of fundamental particles, we have come to understand that the fine structure of the universe is essentially non-commutative. New dictionaries are being built to understand the connections between geometry and the non-commutative world. This research project concerns non-commutative analogues of a geometric operation called resolution of singularities, which "unfolds" a pinched or creased geometry to replace it with a smooth one.The investigator will work on problems at the intersection of commutative algebra, algebraic geometry, and non-commutative algebraic geometry. The research plan involves applying tools and techniques from the representation theory of local rings, Artin algebras, and algebraic groups, to the problems of constructing non-commutative analogues of resolutions of singularities, studying their structure, and applying their existence to study further problems in representation theory. The foundations of the theory of non-commutative resolutions (NCRs) are still in active development, and this proposal would contribute to the maturation of the theory. Furthermore the investigator proposes constructions of new examples of NCRs, which would expand our understanding of the limits of the theory. Some of these new examples would rely on new constructions in geometric tilting theory over homogeneous varieties.
在几何和代数之间有一本经典的字典,至少可以追溯到17世纪的笛卡尔和费马,这本字典已经得到了发展和完善,允许根据被称为交换环的代数对象来详细研究几何空间。 (交换性意味着乘法的顺序无关紧要:x乘以y等于y乘以x。)然而,随着我们对物理世界的理解在量子力学、弦理论和基本粒子研究等领域的发展,我们逐渐认识到,宇宙的精细结构本质上是非对易的。 新的字典正在建立,以了解几何和非交换世界之间的联系。本研究课题是关于奇点解析的几何运算的非交换类似物,奇点解析是指将收缩或褶皱的几何体“展开”,用光滑的几何体代替。研究者将研究交换代数、代数几何和非交换代数几何的交叉问题。该研究计划涉及应用工具和技术,从表示理论的地方环,阿廷代数和代数群,以问题的建设非交换类似物的决议奇异性,研究其结构,并应用其存在,以研究进一步的问题表示理论。 非交换归结理论的基础仍在积极的发展中,这一建议将有助于理论的成熟。 此外,研究者提出了新的NCR的例子,这将扩大我们的理解的理论的局限性的建设。其中一些新的例子将依赖于新的建设几何倾斜理论齐次品种。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Leuschke其他文献
Graham Leuschke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Leuschke', 18)}}的其他基金
Annual New York State Graduate Mathematics Conference
年度纽约州研究生数学会议
- 批准号:
1800121 - 财政年份:2018
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Methods in the Representation Theory of Local Rings
局部环表示论中的方法
- 批准号:
0902119 - 财政年份:2009
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Methods in the Representation Theory of Local Rings
局部环表示论中的方法
- 批准号:
0556181 - 财政年份:2006
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
- 批准号:
2302682 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
- 批准号:
2302341 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
- 批准号:
23K03056 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
- 批准号:
2246962 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
- 批准号:
2302430 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant