Statistical problems in elementary, analytic, and algebraic number theory

初等数论、解析数论和代数数论中的统计问题

基本信息

项目摘要

The theory of numbers is a very active research area in mathematics, with connections across the entire discipline and with wide-reaching consequences for digital security. This proposal principally concerns analytic number theory, which is that aspect of the subject that aims to answer quantitative questions. Examples include: What does a typical integer look like 'statistically', in terms of the number and size of its prime factors? How many primes are there up to a given height? What about primes differing from another prime by 2 (so called twin primes)? This proposal considers a number of questions of this kind, not only for natural numbers but also for other number systems that have proven arithmetically significant (corresponding to number fields and function fields).Three specific topics are considered: The first concerns splitting statistics of primes in algebraic number fields. Elliott and Linnik--Vinogradov developed a method for bounding the least rational prime with a given splitting type in an abelian extension of Q. With Micah Milinovich, Pollack will investigate extending their ideas to certain nonabelian extensions. The second topic is the theory of arithmetic functions, especially as it connects with probabilistic number theory. One problem to be considered is that of obtaining error bounds in a classical theorem of Erdos and Wintner. Finally, Pollack will continue his studies of the distribution of irreducible polynomials over finite fields, with particular attention paid to problems motivated by rational prime number theory. For instance, Pollack will study special configurations of irreducible polynomials, including analogues of the prime k-tuples conjecture and the Bateman--Horn conjecture.
数论是数学中一个非常活跃的研究领域,它与整个学科都有联系,对数字安全有着广泛的影响。这个建议主要涉及解析数论,这是这方面的主题,旨在回答定量问题。例子包括:一个典型的整数在其素因子的数量和大小方面看起来像什么?在给定的高度上有多少个素数?那么,与另一个素数相差2的素数(所谓的孪生素数)呢?这个建议考虑了一些问题,这种类型的,不仅是自然数,而且也为其他一些系统,已证明arithmeticalsignificantly(相应的号码领域和功能fields.Three具体议题被认为:第一个问题分裂统计素数在代数数域。Elliott和Linnik-Vinogradov发展了一种方法,用于在Q的阿贝尔扩张中用给定的分裂类型来界定最小有理素数。与Micah Milinovich一起,Pollack将研究将他们的思想扩展到某些非阿贝尔扩展。第二个主题是算术函数的理论,特别是当它与概率数论相联系时。要考虑的一个问题是,在经典的Erdos和Wintner定理获得误差界。最后,波拉克将继续他的研究分布的不可约多项式在有限领域,特别注意的问题,动机合理的素数理论。例如,波拉克将研究特殊配置的不可约多项式,包括类似的总理k元组猜想和贝特曼-霍恩猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Pollack其他文献

Clustering of linear combinations of multiplicative functions
  • DOI:
    10.1016/j.jnt.2017.05.024
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Noah Lebowitz-Lockard;Paul Pollack
  • 通讯作者:
    Paul Pollack
Tu1862 IMPACT OF DISEASE FLARES ON RESOURCE USE, HEALTH-RELATED QUALITY OF LIFE AND PRODUCTIVITY IN UNTREATED CROHN'S DISEASE PATIENTS IN US: AN ANALYSIS OF NATIONAL HEALTH AND WELLNESS SURVEY DATA
  • DOI:
    10.1016/s0016-5085(24)03763-6
  • 发表时间:
    2024-05-18
  • 期刊:
  • 影响因子:
  • 作者:
    Ana Dubon Garcia;Mirko Sikirica;Paul Pollack;Dominik Naessens;Myrlene Sanon
  • 通讯作者:
    Myrlene Sanon
MIRIKIZUMAB IMPROVES PATIENT ASSESSMENT OF DISEASE SEVERITY AND CHANGE IN DISEASE ACTIVITY IN PATIENTS WITH MODERATELY TO SEVERELY ACTIVE CROHN’S DISEASE
  • DOI:
    10.1053/j.gastro.2021.12.033
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Rubin;Paul Pollack;Theresa Hunter;Mingyang Shan;Lai-Shan Chan;Deanilee Deckard
  • 通讯作者:
    Deanilee Deckard
A note on the least prime that splits completely in a nonabelian Galois number field
  • DOI:
    10.1007/s00209-018-2162-6
  • 发表时间:
    2018-10-30
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Zhenchao Ge;Micah B. Milinovich;Paul Pollack
  • 通讯作者:
    Paul Pollack
Su1915 - Effect of Maintenance Ustekinumab on Corticosteroid-Free Clinical Outcomes in Patients with Crohn’s Disease
  • DOI:
    10.1016/s0016-5085(17)32131-5
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brian G. Feagan;Christopher Gasink;Paul Pollack;Douglas Jacobstein;Long-Long Gao;Jewel Johanns;Ye Miao;Stephan R. Targan;Subrata Ghosh
  • 通讯作者:
    Subrata Ghosh

Paul Pollack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Pollack', 18)}}的其他基金

Statistical Questions in Number Theory and Arithmetic Geometry
数论和算术几何中的统计问题
  • 批准号:
    2001581
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
    Standard Grant
Elementary, analytic, and algorithmic number theory: Research inspired by the mathematics of Carl Pomerance
初等数论、解析数论和算法数论:受 Carl Pomerance 数学启发的研究
  • 批准号:
    1502336
  • 财政年份:
    2015
  • 资助金额:
    $ 13.03万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0802970
  • 财政年份:
    2008
  • 资助金额:
    $ 13.03万
  • 项目类别:
    Fellowship

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on the Significance and Problems of the Thought and Practice of Elementary Music Education in the Postwar Period: Its Continuity from the Prewar Period
战后基础音乐教育思想与实践的意义与问题研究:战前的延续
  • 批准号:
    23K02340
  • 财政年份:
    2023
  • 资助金额:
    $ 13.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the guide for teachers and guardian to solve mental health problems in elementary and junior high school students and establishment of the support system
制定教师和监护人解决中小学生心理健康问题的指南并建立支持体系
  • 批准号:
    22K02494
  • 财政年份:
    2022
  • 资助金额:
    $ 13.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STEAM Education and Training for Underrepresented Students and Teachers in the Arkansas Delta
为阿肯色三角洲地区代表性不足的学生和教师提供 STEAM 教育和培训
  • 批准号:
    10450466
  • 财政年份:
    2022
  • 资助金额:
    $ 13.03万
  • 项目类别:
STEAM Education and Training for Underrepresented Students and Teachers in the Arkansas Delta
为阿肯色三角洲地区代表性不足的学生和教师提供 STEAM 教育和培训
  • 批准号:
    10676305
  • 财政年份:
    2022
  • 资助金额:
    $ 13.03万
  • 项目类别:
Developmental Progression of Youth with Critical Congenital Heart Defects
患有严重先天性心脏缺陷的青少年的发育进展
  • 批准号:
    10171417
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
Developmental Progression of Youth with Critical Congenital Heart Defects
患有严重先天性心脏缺陷的青少年的发育进展
  • 批准号:
    10611955
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
Development of a tailor-made cancer education system to solve the problems of current elementary school cancer education
开发量身定制的癌症教育体系,解决当前小学癌症教育问题
  • 批准号:
    20K10923
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Role of Executive Control in Adolescent Substance Use and Co-occuring Problems
执行控制在青少年药物使用和同时发生的问题中的作用
  • 批准号:
    10196022
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
Role of Executive Control in Adolescent Substance Use and Co-occuring Problems
执行控制在青少年药物使用和同时发生的问题中的作用
  • 批准号:
    10239267
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
Developmental Progression of Youth with Critical Congenital Heart Defects
患有严重先天性心脏缺陷的青少年的发育进展
  • 批准号:
    9973914
  • 财政年份:
    2020
  • 资助金额:
    $ 13.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了