Holomorphic Singular Integral techniques for Non-Smooth domains and applications
非光滑域和应用的全纯奇异积分技术
基本信息
- 批准号:1503612
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This mathematics research project deals with the study of so-called integral formulas in complex and harmonic analysis. Integral formulas are important tools for recovering information on large data sets that are located in hard-to-reach places by collecting very small samples that are within easy reach. For instance, integral formulas can be used to recover the temperature in the interior of a solid body (say a tree, or even a planet) without having to probe holes in the body (that is, in the tree example, without having to drill holes in the trunk). Instead, one measures the temperature at surface level (say on the tree's bark) and plots these values in the integral formula: the output will be the value of the temperature inside. One of the novelties of this project is that it allows to deal with objects whose outer surface is very rough (as opposed to very smooth).The PI and her collaborators will bring together techniques and problems from different parts of the general field of analysis, specifically real harmonic analysis and complex function theory in one and several complex variables. One of the main goals is to develop a theory of Cauchy-like singular integrals with holomorphic kernel and for non-smooth domains in Euclidean complex space that successfully blends the complex structure of the ambient domain with the Calderon-Zygmund theory for singular integrals on non-smooth domains in real space. Doing so requires coming to terms with the additional rigidity imposed by the underlying complex structure, in particular the geometric properties that are collectively known as (or linked to) pseudo-convexity. Applications to several complex variables include the regularity of certain orthogonal projection operators, such as the Bergman and Szego projections, in the novel context of non-smooth domains.
这个数学研究项目涉及复谐分析中所谓的积分公式的研究。积分公式是一种重要的工具,它通过收集非常小的样本来恢复位于难以到达的地方的大数据集的信息。例如,积分公式可以用来恢复固体(比如一棵树,甚至一颗行星)内部的温度,而不需要探测物体上的洞(也就是说,在树的例子中,不需要在树干上钻洞)。取而代之的是,测量表面的温度(比如树皮上的温度),并在积分公式中绘制这些值:输出将是内部温度的值。这个项目的一个新颖之处在于,它允许处理外表面非常粗糙(而不是非常光滑)的物体。PI和她的合作者将汇集来自一般分析领域不同部分的技术和问题,特别是在一个和几个复杂变量中的实谐波分析和复函数理论。本文的主要目标之一是建立欧氏复空间中具有全纯核和非光滑域的类柯西奇异积分理论,成功地将环境域的复杂结构与实际空间中非光滑域上奇异积分的Calderon-Zygmund理论相融合。这样做需要接受潜在复杂结构所施加的额外刚性,特别是统称为(或与之相关的)伪凸性的几何属性。一些复杂变量的应用包括在非光滑域的新背景下某些正交投影算子的正则性,如Bergman和Szego投影。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loredana Lanzani其他文献
Regularity of a $$\overline{\partial }$$-Solution Operator for Strongly $$\mathbf{C}$$-Linearly Convex Domains with Minimal Smoothness
$$overline{partial }$$-强$$mathbf{C}$$-具有最小平滑度的线性凸域的解算子的正则性
- DOI:
10.1007/s12220-020-00443-w - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xianghong Gong;Loredana Lanzani - 通讯作者:
Loredana Lanzani
Hardy spaces of holomorphic functions for domains in $\mathbb C^n$ with minimal smoothness
$mathbb C^n$ 中域的全纯函数 Hardy 空间,具有最小平滑度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Loredana Lanzani;E. Stein - 通讯作者:
E. Stein
Hardy Spaces of Holomorphic Functions for Domains in ℂn with Minimal Smoothness
具有最小平滑度的 ℂn 域的全纯函数 Hardy 空间
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Loredana Lanzani;E. Stein - 通讯作者:
E. Stein
HARMONIC ANALYSIS TECHNIQUES IN SEVERAL COMPLEX VARIABLES SU UN’ APPLICAZIONE DELL’ ANALISI ARMONICA REALE ALL’ANALISI COMPLESSA IN PIU’ VARIABILI
多个复变量的调和分析技术 SU UN’ APPLICAZIONE DELL’ ANALISI ARMONICA REALE ALL’ANALISI COMPLESSA IN PIU’ VARIABILI
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Loredana Lanzani - 通讯作者:
Loredana Lanzani
A transform pair for bounded convex planar domains
有界凸平面域的变换对
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jesse Hulse;Loredana Lanzani;Stefan Llewellyn Smith;Elena Luca - 通讯作者:
Elena Luca
Loredana Lanzani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loredana Lanzani', 18)}}的其他基金
Collaborative Research: The Northeast Analysis Network
合作研究:东北分析网
- 批准号:
1900105 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Holomorphic Singular Integrals in Several Complex Variables and Applications
多复变量中的全纯奇异积分及其应用
- 批准号:
1901978 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference on the Interplay of Harmonic Analysis and Geometry
调和分析与几何相互作用会议
- 批准号:
1803146 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Holomorphic Singular Integrals on Non-Smooth Domains in Complex Analysis
复分析中非光滑域上的全纯奇异积分
- 批准号:
1504589 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Holomorphic Singular Integrals on Non-Smooth Domains in Complex Analysis
复分析中非光滑域上的全纯奇异积分
- 批准号:
1001304 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Singular Integrals and Complex Analysis in One and Several Variables
一变量和多变量的奇异积分和复分析
- 批准号:
0101212 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似海外基金
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
- 批准号:
21K03292 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Singular Integral Operators for Higher-Order Systems in Non-Smooth Domains
非光滑域高阶系统的奇异积分算子
- 批准号:
1900938 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Singular integral operators and stochastic processes (A02)
奇异积分算子和随机过程(A02)
- 批准号:
366722790 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Collaborative Research Centres
Construction of multi-dimensional singular integral theory in non-commutative harmonic analysis - A new method combining real analysis and representation theory
非交换调和分析中多维奇异积分理论的构建——实分析与表示论相结合的新方法
- 批准号:
16K05211 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)