Spin-orbit Interaction Driven Phenomena in Magnetic Heterostructures
磁异质结构中的自旋轨道相互作用驱动现象
基本信息
- 批准号:1505192
- 负责人:
- 金额:$ 40.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical AbstractRecent breakthroughs in the field of spintronics, where scientists explore the spin or magnetic properties in addition to the electric properties of electrons, have created opportunities for future generations of memory and logic devices. It is found that an electrical current passing through a heavy metal such as platinum or tantalum can create, in the traverse direction, a pure spin current where electrons of opposite spin directions move in opposite directions. This pure spin current diffuses into a neighboring magnetic layer and exerts torque on spins in the magnetic layer, leading to an effective method of controlling the properties of the magnetic layer. The project aims towards acquiring a fundamental understanding of how a pure spin current traverses through materials and interfaces and interacts with spins in the magnetic layer. With novel approaches in experimental detection methods that are immune to artifacts and with interface engineering, the research team can separate and quantify various contributions arising from the bulk and interface effects. The research may also lead to new materials that provide more efficient control over nano-magnets, key ingredients in memory and logic devices. The project, leveraging on the creation of a nanofabrication facility at the University of Delaware, also aims to train undergraduate and graduate students and professionals via nanofabrication courses and certification programs. The educational activities also include outreach programs focusing on K-12 students. Technical AbstractSpin-orbit interaction (SOC) driven phenomena, such as current-induced magnetization switching and domain motion in magnetic heterostructures involving heavy metals, have attracted great attention. These phenomena arise from an intricate combination of effects including the Spin Hall Effect (SHE), interfacial Rashba SOC, and Dzyaloshinskii-Moriya Interaction (DMI), which are strongly correlated with SOC in materials and at interfaces. It is essential to understand the underlying physics responsible for these recent exciting discoveries in ferromagnetic heterostructures in order to unleash their true potential in spintronic applications. There is a lack of experimental techniques that can unravel the entanglement of torques from the SHE and Rashba effect. With designed interfaces that are nearly transparent to spin currents but significantly modify the Rashba effect and innovative 3D MOKE spin torque magnetometers that can measure torques on magnetization at arbitrary directions, the research proposes a comprehensive experimental effort to understand the rich SOC-driven phenomena in these ferromagnetic heterostructures. The project objectives are to: (1) develop 3D MOKE spin torque magnetometers capable of measuring SO torques on magnetization at an arbitrary angle, (2) quantitatively separate the SHE and Rashba SOC contributions to the SO torques, and relate them to the interface SOC, (3) characterize and optimize DMI, particularly in structures with large voltage controlled interface magnetic anisotropy, and (4) search for new material systems that possess preferred SOC-induced effects.
自旋电子学领域的最新突破,科学家们除了探索电子的电学性质外,还探索了自旋或磁性质,为未来几代存储器和逻辑器件创造了机会。人们发现,电流通过重金属,如铂或钽可以创建,在横向上,一个纯粹的自旋电流,其中相反的自旋方向的电子在相反的方向上移动。 这种纯自旋电流扩散到相邻的磁性层中,并对磁性层中的自旋施加扭矩,从而产生了控制磁性层性质的有效方法。 该项目旨在获得纯自旋电流如何穿过材料和界面并与磁性层中的自旋相互作用的基本理解。 通过实验检测方法中的新方法,这些方法不受人工制品的影响,并结合界面工程,研究团队可以分离和量化体积效应和界面效应产生的各种贡献。 这项研究还可能导致新材料的产生,这些新材料可以更有效地控制纳米磁体,这是存储器和逻辑器件的关键成分。 该项目利用特拉华州大学创建的纳米纤维设施,还旨在通过纳米纤维课程和认证计划培训本科生和研究生以及专业人员。 教育活动还包括以K-12学生为重点的外展计划。 自旋-轨道相互作用(SOC)驱动的重金属磁性异质结构中的电流感生磁化翻转和磁畴运动等现象引起了人们的极大关注。这些现象产生于一个复杂的组合效应,包括自旋霍尔效应(SHE),界面Rashba SOC,和Dzyaloshinskiii-Moriya相互作用(Dzyaloshinskiii-Moriya Interaction),这是强烈相关的SOC在材料和界面。为了释放它们在自旋电子学应用中的真正潜力,理解铁磁异质结构中这些令人兴奋的发现的基本物理是至关重要的。缺乏实验技术可以解开SHE和Rashba效应的扭矩纠缠。通过设计对自旋电流几乎透明但显着改变Rashba效应的界面以及可以测量任意方向磁化扭矩的创新3D MOKE自旋扭矩磁力计,该研究提出了一项全面的实验努力,以了解丰富的SOC驱动现象这些铁磁异质结构。该项目的目标是:(1)开发能够以任意角度测量磁化上的SO转矩的3D MOKE自旋转矩磁力计,(2)定量地分离SHE和Rashba SOC对SO转矩的贡献,并将它们与界面SOC相关联,(3)表征和优化磁感应强度,特别是在具有大电压控制界面磁各向异性的结构中,(4)寻找具有优选SOC诱导效应的新材料体系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Xiao其他文献
John Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Xiao', 18)}}的其他基金
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
- 批准号:
2316664 - 财政年份:2023
- 资助金额:
$ 40.53万 - 项目类别:
Continuing Grant
High-Speed Quantum Magnetic Widefield Imaging
高速量子磁宽场成像
- 批准号:
2203829 - 财政年份:2022
- 资助金额:
$ 40.53万 - 项目类别:
Continuing Grant
Novel Transverse Spin Hall Effect Induced Phenomena in Single Ferromagnet and Magnetic Heterostructures
单铁磁体和磁性异质结构中新型横向自旋霍尔效应感应现象
- 批准号:
1904076 - 财政年份:2019
- 资助金额:
$ 40.53万 - 项目类别:
Standard Grant
SGER: Microwave Induced Large Angle Magnetic Dynamics and Switching in Confined Structures
SGER:微波感应大角度磁动力学和受限结构中的切换
- 批准号:
0827249 - 财政年份:2008
- 资助金额:
$ 40.53万 - 项目类别:
Continuing Grant
Spin Polarized Transport Properties in Tunnel Structures
隧道结构中的自旋极化传输特性
- 批准号:
0405136 - 财政年份:2004
- 资助金额:
$ 40.53万 - 项目类别:
Continuing Grant
Interface Effects in Magnetic Tunneling Junctions
磁隧道结中的界面效应
- 批准号:
0071878 - 财政年份:2000
- 资助金额:
$ 40.53万 - 项目类别:
Standard Grant
Acquisition of a Vibration Sample Magnetometer
获取振动样品磁力计
- 批准号:
9704246 - 财政年份:1997
- 资助金额:
$ 40.53万 - 项目类别:
Standard Grant
相似国自然基金
铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
- 批准号:11574129
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
相似海外基金
Exploring the spin-orbit interaction of light in the whispering gallery mode hollow-microcavities
探索回音壁模式中空微腔中光的自旋轨道相互作用
- 批准号:
24K08290 - 财政年份:2024
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancement of the spin-orbit interaction and exotic superconductivity in correlated metals
相关金属中自旋轨道相互作用和奇异超导性的增强
- 批准号:
23K03330 - 财政年份:2023
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative evaluation of spin-orbit interaction to develop higher-efficient organic room temperature phosphorescence materials
自旋轨道相互作用的定量评估以开发更高效的有机室温磷光材料
- 批准号:
22K05039 - 财政年份:2022
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of gradient spintronics based on oxide thin films with strong spin-orbit interaction
基于具有强自旋轨道相互作用的氧化物薄膜创建梯度自旋电子学
- 批准号:
22K14595 - 财政年份:2022
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-Reciprocal Transport at Surface Edges of Strong Spin-Orbit Interaction Materials
强自旋轨道相互作用材料表面边缘的非互易输运
- 批准号:
20H00342 - 财政年份:2020
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
development of hybrid nanostructured devices based on spin-orbit interaction and elucidations of their functions
基于自旋轨道相互作用的混合纳米结构器件的开发及其功能的阐明
- 批准号:
20H02562 - 财政年份:2020
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of heavy-hole spin qubit in germanium and its optimization by contorling spin-orbit interaction
锗重空穴自旋量子位的开发及其通过控制自旋轨道相互作用的优化
- 批准号:
20K15114 - 财政年份:2020
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spin-orbit interaction in s-electron nanocluster systems enhanced by Rashba effect
Rashba 效应增强 s 电子纳米团簇系统中的自旋轨道相互作用
- 批准号:
19K03738 - 财政年份:2019
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of ultra-high-speed electromagnet based on spin-orbit interaction
基于自旋轨道相互作用的超高速电磁体研究
- 批准号:
18K18849 - 财政年份:2018
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Experimental study of one-dimensional electron systems with strong spin-orbit interaction and the superconducting junction
强自旋轨道相互作用一维电子系统及超导结的实验研究
- 批准号:
18H01813 - 财政年份:2018
- 资助金额:
$ 40.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)