Interface Effects in Magnetic Tunneling Junctions

磁隧道结中的界面效应

基本信息

  • 批准号:
    0071878
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

This individual investigator award is to a young professor at the University of Delaware for a project that investigates the fundamental aspects of how electrode-insulator interfaces affect spin-dependent electron tunneling and the magnetic properties of magnetic tunnel junctions. These systems are promising candidates for new generations of highly magnetoresistive devices and for advancing our understanding of spin transport. Significant issues, such the strong temperature and bias voltage dependence of the tunneling magnetoresistance, are attributed to the interfacial spins, but remain unresolved. A series of electrical transport and structural investigations are proposed to correlate interface characteristics with spin-dependent transport properties and test competing theories that have been developed. An important feature of this work is using samples with a wedged-shaped aluminum metal layer. This allows junctions with under-, completely-, and over-oxidized tunnel barriers to be readily obtained. Phenomena to be investigated include: charge and magnetization accumulations at the electrode-insulator interfaces, a spin-dependent electric field distribution in the magnetic electrodes, and a chemical potential splitting between spin-up and spin-down electronic bands due to electron-electron interactions. The proposed research has relevance to semiconductor research involving gated dielectric materials, hybrid ferromagnet-semiconductor heterostructures, and spin-injection into semiconductors or metals. Graduate students involved in this project will receive training in physics, nanostructured materials, and device fabrication that is currently at the forefront scientific and technical areas. This training will prepare them for a range of careers in industry, government, or academe. %%%Thin film magnetic multilayer structures are driving a new approach to electronics that is based on the spin state (up or down) of the carriers rather than on its charge as in conventional semiconductor electronics. Magnetic tunnel junctions, for example, are promising candidates for new generations of magnetoresistive devices and for understanding fundamental aspects of spin transport. In these systems, interfaces between metal and insulating layers play a critical role in determining the electrical and magnetic properties. This individual investigator award to a young professor at the University of Delaware is for a project consisting of a series of electrical measurements and structural investigations directed at correlating interface structure with spin-dependent transport properties, a problem of technological importance. Fundamental aspects of electrode-insulator interfaces will be studied such as: charge and magnetization accumulation at the interface, a spin-dependent electric field distribution in the magnetic electrodes, and the role of electron-electron interactions. Knowledge gained is anticipated to benefit new research fields involving hybrid magnetic-semiconductor heterostructures and spin-injection devices. This project offers excellent research and education opportunities for students within an interdisciplinary program focused on physics and materials that is currently at the forefront scientific and technical areas. The students will acquire rigorous training and skills in nanostructured materials and device fabrication that will prepare them for a range of careers in industry, government, or academe.***
这一个人研究人员奖授予特拉华大学的一位年轻教授,以表彰他的一个项目,该项目调查了电极-绝缘体界面如何影响自旋相关的电子隧道效应以及磁隧道结的磁性的基本方面。这些系统很有希望成为新一代高磁阻器件的候选者,并有助于提高我们对自旋输运的理解。一些重要的问题,如隧道磁阻对温度和偏置电压的强烈依赖,被归因于界面自旋,但仍未解决。提出了一系列的电输运和结构研究,以将界面特征与自旋相关的输运性质联系起来,并检验已发展的相互竞争的理论。这项工作的一个重要特点是使用了带有楔形铝金属层的样品。这使得具有不足、完全和过氧化的隧道势垒的结很容易获得。要研究的现象包括:电极-绝缘体界面上的电荷和磁化积累,磁电极中与自旋有关的电场分布,以及由于电子-电子相互作用而导致的自旋向上和向下电子带之间的化学势分裂。建议的研究与半导体研究有关,涉及栅电介质材料、铁磁-半导体混合异质结构以及半导体或金属中的自旋注入。参与该项目的研究生将接受目前处于前沿科学和技术领域的物理学、纳米结构材料和设备制造方面的培训。这项培训将为他们在工业、政府或学术界的一系列职业生涯做好准备。薄膜磁性多层结构正在推动一种新的电子学方法,这种方法基于载流子的自旋状态(向上或向下),而不是像传统的半导体电子学中那样基于其电荷。例如,磁隧道结很有希望成为新一代磁阻器件和理解自旋输运的基本方面的候选者。在这些系统中,金属和绝缘层之间的界面在决定电和磁性能方面起着关键作用。这个授予特拉华大学一位年轻教授的个人研究人员奖是为了表彰一个项目,该项目包括一系列电学测量和结构调查,旨在将界面结构与自旋相关的输运性质联系起来,这是一个具有技术重要性的问题。将研究电极-绝缘体界面的基本方面,如:界面上的电荷和磁化积累,磁电极中与自旋相关的电场分布,以及电子-电子相互作用的作用。所获得的知识预计将有助于涉及混合磁-半导体异质结构和自旋注入器件的新研究领域。这个项目为学生提供了极好的研究和教育机会,该项目专注于目前处于前沿科学和技术领域的物理和材料的跨学科项目。这些学生将获得纳米结构材料和设备制造方面的严格培训和技能,为他们在工业、政府或学术界的一系列职业生涯做好准备。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Xiao其他文献

John Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Xiao', 18)}}的其他基金

Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
  • 批准号:
    2316664
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
High-Speed Quantum Magnetic Widefield Imaging
高速量子磁宽场成像
  • 批准号:
    2203829
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Novel Transverse Spin Hall Effect Induced Phenomena in Single Ferromagnet and Magnetic Heterostructures
单铁磁体和磁性异质结构中新型横向自旋霍尔效应感应现象
  • 批准号:
    1904076
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Spin-orbit Interaction Driven Phenomena in Magnetic Heterostructures
磁异质结构中的自旋轨道相互作用驱动现象
  • 批准号:
    1505192
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Novel Spintronic Microwave Devices
新型自旋电子微波器件
  • 批准号:
    1001715
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
SGER: Microwave Induced Large Angle Magnetic Dynamics and Switching in Confined Structures
SGER:微波感应大角度磁动力学和受限结构中的切换
  • 批准号:
    0827249
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Spin Polarized Transport Properties in Tunnel Structures
隧道结构中的自旋极化传输特性
  • 批准号:
    0405136
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Acquisition of a Vibration Sample Magnetometer
获取振动样品磁力计
  • 批准号:
    9704246
  • 财政年份:
    1997
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evaluation of effects of subsonic/supersonic inflow on a magnetic reconnection process
亚音速/超音速流入对磁重联过程影响的评估
  • 批准号:
    23K13081
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
  • 批准号:
    10646759
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Investigating circuit-specific effects of high-frequency repetitive transcranial magnetic stimulation
研究高频重复经颅磁刺激的电路特异性效应
  • 批准号:
    10827239
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Interaction effects between actively stabilized axes and stabilization of ultra-compact and low stiffness magnetic levitation systems.
主动稳定轴与超紧凑低刚度磁悬浮系统稳定之间的相互作用效应。
  • 批准号:
    23K03741
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intrusive Magmatism and Effects on Magnetic Field and Atmosphere Evolution
侵入岩浆作用及其对磁场和大气演化的影响
  • 批准号:
    568279-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Postdoctoral Fellowships
Effects of repetitive peripheral magnetic stimulation on motor recovery of upper extremity after cervical spinal cord injury and the underlying neural basis
重复外周磁刺激对颈髓损伤后上肢运动恢复的影响及神经基础
  • 批准号:
    22K11425
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling the effects of transcranial magnetic stimulation on oscillatory dynamics in the thalamocortical circuit
模拟经颅磁刺激对丘脑皮质回路振荡动力学的影响
  • 批准号:
    559788-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Manifestation of Magnetic Field Effects in Molecular Dynamics
分子动力学中磁场效应的表现
  • 批准号:
    2154346
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
REDEEM-electrocat: Rethinking Electrode Design - Emergent Electronic and Magnetic effects in electrocatalysis
REDEEM-electriccat:重新思考电极设计 - 电催化中出现的电子和磁效应
  • 批准号:
    EP/V048279/1
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Modeling the effects of transcranial magnetic stimulation on oscillatory dynamics in the thalamocortical circuit
模拟经颅磁刺激对丘脑皮质回路振荡动力学的影响
  • 批准号:
    559788-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了