Spin Polarized Transport Properties in Tunnel Structures
隧道结构中的自旋极化传输特性
基本信息
- 批准号:0405136
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two vital scientific areas with important technological prospects involve spin transport in tunneling structures made of metals and semiconductors. The fabrication of magnetic tunnel junction heterostructures is becoming a mature technology, and yet there still remain important scientific issues related to the bias dependence of the tunneling magnetoresistance, noise, and structure-property relationships. This individual investigator award supports a project that focuses on developing a thorough understanding of spin-polarized tunneling transport. The studies involve: applying electron holography to profile the tunnel barrier; investigating, both in theory and in experiment, how the density-of-states, the barrier height, and the barrier shape affect the bias dependence of the tunneling magnetoresistance; examining the interplay among different length scales arising from charge and spin transport; using noise spectroscopy to probe magnetization reversal and fluctuations, defects in the tunnel barrier, and the distribution of conductance channels in the barrier; and developing room temperature ferromagnetic semiconductors. These issues directly impact the technological prospects of using tunnel junction structures for nonvolatile magnetic random access memory and field sensing applications, such as magnetic recording read heads and biological assays that use magnetoresistive sensor arrays. In view of this, the PIs maintain collaborations with industry. The program also aims to bring relevance to science education where two distinct needs have become apparent. The first is that higher education must address explicitly the issue of transferable job skills in the curriculum. The second is the importance of science and magneto-electronic technology to U.S. competitiveness and economic growth. These two needs will be addressed in a program that spans local, regional, and international levels.Modern technological advances in nanofabrication methods and heteroepitaxy have greatly invigorated the investigation of magnetism and are providing the capability to engineer magnetic phenomena at the nanoscale. New fields of basic research have also emerged - a notable example is "spin-electronics" or "spintronics". Applications of these advances are enabling the creation of entirely new magneto-electronic device structures and driving the development of a revolutionary new class of electronics based on electron's spin (a quantity related to electron's magnetic behavior) in addition to, or in place of, electronic charge. Two vital scientific areas with important technological prospects involve spin transport in metallic tunnel junction systems and semiconductors. In this proposal, we concentrate on developing a thorough understanding of spin-polarized tunneling transport through a synergistic combination of: a novel microscopy technique used to reveal how the properties of the tunnel barrier affect a device's resistive response to an applied magnetic field (magnetoresistance); examining the interplay among different length scales arising from charge and spin transport; using noise spectroscopy to probe magnetization reversal and fluctuations, defects in the tunnel barrier, and the distribution of conductance channels in the barrier, and developing room temperature ferromagnetic semiconductors. These issues directly impact the technological prospects of using tunnel junction structures for nonvolatile magnetic random access memory and field sensing applications, such as in magnetic recording read heads. In view of this the PIs collaborate with leading industries towards optimizing device performance. The program also aims to bring relevance to science education. Two distinct needs have become apparent. The first is that higher education must address explicitly the issue of the role of transferable job skills in the curriculum. The second is the importance of science and magneto-electronic technology to U.S. competitiveness and economic growth. These two needs will be addressed in a program that spans local, regional, and international levels.
两个具有重要技术前景的重要科学领域涉及金属和半导体隧道结构中的自旋输运。磁隧道结异质结构的制备已成为一项成熟的技术,但仍存在与隧道磁电阻的偏置依赖性、噪声和结构-性能关系相关的重要科学问题。这个个人研究者奖支持一个项目,重点是发展对自旋极化隧道传输的透彻理解。研究内容包括:应用电子全息技术对隧道势垒进行成像;从理论和实验两方面研究了态密度、势垒高度和势垒形状对隧穿磁电阻偏置依赖性的影响;考察电荷输运和自旋输运引起的不同长度尺度之间的相互作用;利用噪声光谱技术探测隧道势垒中的磁化反转和波动、缺陷以及势垒中电导通道的分布;开发室温铁磁半导体。这些问题直接影响了将隧道结结构用于非易失性磁随机存取存储器和场传感应用的技术前景,例如使用磁阻传感器阵列的磁记录读取头和生物分析。有鉴于此,资讯科技署与业界保持合作关系。该项目还旨在为两种截然不同的需求变得明显的科学教育带来相关性。首先,高等教育必须明确解决课程中可转换工作技能的问题。第二是科学和磁电子技术对美国竞争力和经济增长的重要性。这两个需求将在一个跨越地方、区域和国际层面的项目中得到解决。纳米制造方法和异质外延的现代技术进步极大地促进了磁性的研究,并提供了在纳米尺度上设计磁性现象的能力。基础研究的新领域也出现了——一个显著的例子是“自旋电子学”或“自旋电子学”。这些进步的应用使创造全新的磁电子器件结构成为可能,并推动了一种革命性的新型电子器件的发展,这种电子器件是基于电子自旋(与电子的磁性行为有关的数量),或者取代电子电荷。金属隧道结系统中的自旋输运和半导体是两个具有重要技术前景的重要科学领域。在本提案中,我们专注于通过以下协同组合来全面了解自旋极化隧道输运:一种用于揭示隧道势垒特性如何影响器件对外加磁场的电阻响应的新型显微镜技术(磁电阻);考察电荷输运和自旋输运引起的不同长度尺度之间的相互作用;利用噪声光谱技术探测磁化反转与波动、隧道势垒中的缺陷以及势垒中电导通道的分布,开发室温铁磁半导体。这些问题直接影响了隧道结结构用于非易失性磁随机存取存储器和磁场传感应用的技术前景,例如磁记录读磁头。鉴于此,pi与领先行业合作以优化设备性能。该项目还旨在为科学教育带来相关性。两种截然不同的需求已经变得明显。首先,高等教育必须明确解决可转移工作技能在课程中的作用问题。第二是科学和磁电子技术对美国竞争力和经济增长的重要性。这两个需求将在一个跨越地方、区域和国际层面的项目中得到解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Xiao其他文献
John Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Xiao', 18)}}的其他基金
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
- 批准号:
2316664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
High-Speed Quantum Magnetic Widefield Imaging
高速量子磁宽场成像
- 批准号:
2203829 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Novel Transverse Spin Hall Effect Induced Phenomena in Single Ferromagnet and Magnetic Heterostructures
单铁磁体和磁性异质结构中新型横向自旋霍尔效应感应现象
- 批准号:
1904076 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Spin-orbit Interaction Driven Phenomena in Magnetic Heterostructures
磁异质结构中的自旋轨道相互作用驱动现象
- 批准号:
1505192 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
SGER: Microwave Induced Large Angle Magnetic Dynamics and Switching in Confined Structures
SGER:微波感应大角度磁动力学和受限结构中的切换
- 批准号:
0827249 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Interface Effects in Magnetic Tunneling Junctions
磁隧道结中的界面效应
- 批准号:
0071878 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Acquisition of a Vibration Sample Magnetometer
获取振动样品磁力计
- 批准号:
9704246 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
BB/X002810/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
2314465 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spin Transport in Highly Spin-Polarized Epitaxial Nanostructures
高度自旋极化外延纳米结构中的自旋输运
- 批准号:
1307056 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Theory of spin-polarized thermal transport in ferromagnetic metallic heterostructures
铁磁金属异质结构中自旋极化热传输理论
- 批准号:
198359765 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Priority Programmes
Development of a spin-polarized probe for nanoscale transport measurements and its application to spin transport of surface Rashba systems
用于纳米级输运测量的自旋极化探针的开发及其在表面 Rashba 系统自旋输运中的应用
- 批准号:
22656011 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Perpendicular-Current Spin-Polarized Transport Studies
垂直电流自旋极化输运研究
- 批准号:
0804126 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Spin-polarized electron transport through selected molecules by means of spin-polarized scanning tunneling microscopy
利用自旋极化扫描隧道显微镜通过选定分子进行自旋极化电子传输
- 批准号:
35799733 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Electronic and Transport Properties of Two-Dimensional Magnetic and Spin-Polarized Heterostructures (C07)
二维磁性和自旋极化异质结构的电子和输运特性(C07)
- 批准号:
19637738 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Collaborative Research Centres
Describing the spin-polarized transport in molecular junctions by ab-initio calculations
通过从头计算描述分子连接中的自旋极化传输
- 批准号:
25247818 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
CAREER: Spin-Polarized Transport and Spintronic Devices
职业:自旋极化传输和自旋电子器件
- 批准号:
0547482 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant