High-Speed Quantum Magnetic Widefield Imaging

高速量子磁宽场成像

基本信息

  • 批准号:
    2203829
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging (CMI) program of the Chemistry Division and the Established Program to Stimulate Competitive Research (EPSCoR), Mark Ku and his research group at the University of Delaware are developing a novel magnetic imaging technology based on nitrogen-vacancy (NV) centers in diamond as quantum sensors. This new approach to using NV quantum sensors promises a unique set of capabilities for sensing weak magnetic fields with high spatial resolution and over a wide field-of-view. High-speed, wide-field (WF) NV magnetic imaging has the potential to enable a variety of breakthrough applications involving chemical imaging and quantum sensing. Specifically, the Ku group is working to develop novel instrumentation – a dynamical quantum magnetic imaging (DQMI) microscope – that will advance the state-of-the-art in frame rate, spatial resolution, and sensitivity of real-time magnetic imaging. The research team is pursuing an approach that combines the integration of a novel camera technology for NV magnetic imaging and the quantum control of NV sensors in order to provide a foundation for a number of high-impact measurement and imaging applications, including real-time WF detection of radical compounds and their redox reactions; micron-scale nuclear magnetic resonance imaging; imaging, tracking, and counting of nano-particle tags for chemical sensing; and imaging of neuronal activity. The broader impacts of the project also include potential applications in the development of new quantum technologies, and the development of a new course for the Quantum Science and Engineering graduate program at the University of Delaware. The research project also will provide advanced training opportunities for the next generation of scientists and engineers, including graduate and undergraduate students from diverse backgrounds.The goal of this project is to develop a novel high-speed, wide-field dynamical quantum magnetic imaging (DQMI) microscope using NV centers in diamond as quantum sensors. The research team is working to enhance the sensitivity of magnetic imaging through quantum control of the NV centers and the environment. The DQMI approach has the potential to enable real-time imaging of dynamic magnetic fields over a large field-of-view at frame rates up to ~1000 frames-per-second (fps) and correlation imaging with MHz sampling rates and sub-micron resolution. The research team is working toward these goals by integrating a novel camera technology for NV magnetic imaging and quantum control of the NV sensors. The Ku group plans to demonstrate new capabilities for real-time imaging of dynamical magnetic fields, magnetic noise, and magnetic correlation functions. Techniques are also being developed to enhance sensitivity by controlling the coupling between NV centers and environmental spins. Furthermore, the research team is developing a novel technique to interface NV centers with a sample of interest via the use of diamond micro-chips. The broader impacts of the project are enhanced through educational activities, including active involvement and training of graduate and undergraduate students to prepare the next generation of scientists and engineers; a continued focus on recruiting, retaining, and advancing students from groups that are underrepresented in STEM fields; and the development of a new Experimental Methods for Quantum Systems course as part of the newly launched Quantum Science and Engineering graduate program at the University of Delaware.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学部化学测量和成像(CMI)计划和刺激竞争性研究(EPSCoR)既定计划的支持下,特拉华州大学的Mark Ku和他的研究小组正在开发一种基于金刚石中的氮空位(NV)中心作为量子传感器的新型磁成像技术。这种使用NV量子传感器的新方法有望提供一系列独特的功能,用于以高空间分辨率和宽视场感测弱磁场。高速、宽场(WF)NV磁成像有可能实现涉及化学成像和量子传感的各种突破性应用。具体来说,Ku小组正在努力开发新的仪器-动态量子磁成像(DQMI)显微镜-这将推进实时磁成像的帧速率,空间分辨率和灵敏度的最新技术。该研究小组正在寻求一种方法,该方法将用于NV磁成像的新型相机技术与NV传感器的量子控制相结合,以便为许多高影响力的测量和成像应用提供基础,包括自由基化合物及其氧化还原反应的实时WF检测;微米级核磁共振成像;用于化学传感的纳米颗粒标签的成像、跟踪和计数;以及神经元活动的成像。该项目的更广泛影响还包括新量子技术开发的潜在应用,以及为特拉华州大学量子科学与工程研究生课程开发新课程。该研究项目还将为下一代科学家和工程师提供高级培训机会,包括来自不同背景的研究生和本科生。该项目的目标是开发一种新型的高速,宽场动态量子磁成像(DQMI)显微镜,使用金刚石中的NV中心作为量子传感器。该研究小组正在努力通过对NV中心和环境的量子控制来提高磁成像的灵敏度。DQMI方法有可能以高达约1000帧/秒(fps)的帧速率在大视场内实现动态磁场的实时成像,并以MHz采样率和亚微米分辨率实现相关成像。研究团队正在通过整合一种用于NV磁成像和NV传感器量子控制的新型相机技术来实现这些目标。Ku小组计划展示动态磁场、磁噪声和磁相关函数实时成像的新能力。还正在开发通过控制NV中心和环境自旋之间的耦合来提高灵敏度的技术。此外,研究小组正在开发一种新技术,通过使用金刚石微芯片将NV中心与感兴趣的样品连接起来。该项目的更广泛的影响通过教育活动得到加强,包括研究生和本科生的积极参与和培训,为下一代科学家和工程师做好准备;继续关注从STEM领域代表性不足的群体中招募,保留和提升学生;以及作为特拉华州大学新推出的量子科学与工程研究生课程的一部分,量子系统新实验方法的开发。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Xiao其他文献

John Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Xiao', 18)}}的其他基金

Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
  • 批准号:
    2316664
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Novel Transverse Spin Hall Effect Induced Phenomena in Single Ferromagnet and Magnetic Heterostructures
单铁磁体和磁性异质结构中新型横向自旋霍尔效应感应现象
  • 批准号:
    1904076
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Spin-orbit Interaction Driven Phenomena in Magnetic Heterostructures
磁异质结构中的自旋轨道相互作用驱动现象
  • 批准号:
    1505192
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Novel Spintronic Microwave Devices
新型自旋电子微波器件
  • 批准号:
    1001715
  • 财政年份:
    2010
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
SGER: Microwave Induced Large Angle Magnetic Dynamics and Switching in Confined Structures
SGER:微波感应大角度磁动力学和受限结构中的切换
  • 批准号:
    0827249
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Spin Polarized Transport Properties in Tunnel Structures
隧道结构中的自旋极化传输特性
  • 批准号:
    0405136
  • 财政年份:
    2004
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Interface Effects in Magnetic Tunneling Junctions
磁隧道结中的界面效应
  • 批准号:
    0071878
  • 财政年份:
    2000
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Acquisition of a Vibration Sample Magnetometer
获取振动样品磁力计
  • 批准号:
    9704246
  • 财政年份:
    1997
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
  • 批准号:
    LE240100092
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
  • 批准号:
    23K17906
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
  • 批准号:
    22KF0111
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum dynamics and noise in frustrated magnetic materials
受挫磁性材料中的量子动力学和噪声
  • 批准号:
    2888585
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
elucidation of magnetic field induced quantum phases and development of kagome-lattice antiferromagnets in doubly ordered pyrochlore
双序烧绿石中磁场诱导量子相的阐明和戈薇晶格反铁磁体的开发
  • 批准号:
    23H01123
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Creation of variable magnetic lattices of S=1 species made of organic biradicals and elucidation of quantum magnetic states
创建由有机双自由基组成的 S=1 种可变磁晶格并阐明量子磁态
  • 批准号:
    23H01127
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
  • 批准号:
    23KK0051
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Exploring quantum materials using extreme conditions of magnetic field and applied pressure
利用磁场和施加压力的极端条件探索量子材料
  • 批准号:
    2879723
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了