A Program in Ultralow-Temperature Atomic Physics

超低温原子物理项目

基本信息

  • 批准号:
    1506369
  • 负责人:
  • 金额:
    $ 320.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

The goal of this program is to study materials at a fundamental level. The result is a deeper understanding of important materials, and new insights into the principles of material properties. By creating and studying models of new materials, the researchers want to find out if speculative new materials can be realized in Nature. The experimental program employs methods developed in atomic physics to control the motion and orientation of atoms with unprecedented precision. Those well controlled building blocks can now be assembled into new materials like Lego pieces. These new materials may show behavior similar to naturally occurring materials which are not fully understood, or even display phenomena never seen before. Assembling new forms of matter with well separated atoms has the advantage that the building blocks and their interactions are well known, and therefore also the basic equations describing their behavior. This together leads to a platform where both theoretical methods (analyzing these equations) and experimental methods (using the precision of atomic physics) can be combined to obtain a deeper understanding for important materials and find new possibilities for synthesizing new materials. The major focus of the research program is on the question how strong magnetic fields and magnetic couplings (called spin-orbit coupling) change the properties of electrons in semiconductors and metals. Since our Lego pieces are neutral atoms, real magnetic fields are replaced by so-called synthetic magnetic fields created with the help of laser beams. In addition, the researchers will study fundamental aspects of ferromagnetism, and create ultracold molecules. The realization of new forms of ultracold matter will advance our understanding of materials and provide guiding principles for materials research. The proposed work is fundamental in its immediate impact, but in the long run, it should lead to devices and advanced materials with yet unknown properties, and open new possibilities and applications. Besides promoting the progress of science; this program educates students and postdocs and prepares them for a career in areas of advanced technology.More technically, the goal of this project is to further advance the use of cold atoms as model systems for strongly correlated matter, but also to take this approach to the next level by creating materials with no known counterpart in Nature. In the spirit of quantum simulations, samples will be prepared which are the simplest possible realizations of many-body Hamiltonians representing idealized paradigmatic forms of matter. The major foci of the proposed research in the next five years are the themes of synthetic gauge fields and spin orbit coupling. These goals make strong connections with current frontiers in many-body theory and in condensed matter physics, including the quantum Hall effect, topological insulators, and strongly correlated states. These materials are more profoundly quantum mechanical than ordinary materials because they exploit non-trivial quantum mechanical phases (geometric phases, Berry phase) or quantum entanglement. In addition,it is planned to explore itinerant ferromagnetism, cooling to picokelvin temperatures using adiabatic state preparation, and the sodium-lithium dimer as a heteronuclear dipolar molecule.
该计划的目标是在基础水平上研究材料。其结果是对重要材料有了更深入的了解,并对材料特性的原理有了新的见解。通过创建和研究新材料的模型,研究人员想知道推测性新材料是否可以在《自然》中实现。实验程序采用原子物理学中发展起来的方法,以前所未有的精度控制原子的运动和方向。那些控制良好的积木现在可以组装成像乐高积木一样的新材料。这些新材料可能表现出与尚未完全理解的自然发生材料相似的行为,甚至表现出从未见过的现象。用分离良好的原子组合新形式的物质有一个优点,那就是我们都知道这些组成部分和它们之间的相互作用,因此也就知道了描述它们行为的基本方程。这共同导致了一个平台,理论方法(分析这些方程)和实验方法(利用原子物理的精度)可以结合起来,以获得对重要材料的更深入的理解,并为合成新材料找到新的可能性。该研究项目的主要焦点是强磁场和磁耦合(称为自旋轨道耦合)如何改变半导体和金属中电子的性质。由于我们的乐高积木是中性原子,真正的磁场被所谓的合成磁场所取代,这种磁场是在激光束的帮助下产生的。此外,研究人员将研究铁磁性的基本方面,并创造超冷分子。超冷物质新形态的实现将促进我们对材料的认识,并为材料研究提供指导原则。这项提议的工作在其直接影响方面是根本性的,但从长远来看,它应该会导致具有未知属性的设备和先进材料,并开辟新的可能性和应用。除了促进科学的进步;该计划教育学生和博士后,并为他们在先进技术领域的职业生涯做好准备。从技术上讲,这个项目的目标是进一步推进冷原子作为强相关物质模型系统的使用,同时通过创造自然界中没有已知对应材料的方法,将这种方法提升到一个新的水平。在量子模拟的精神下,将制备样品,这些样品是代表物质的理想化范例形式的多体哈密顿量的最简单可能实现。未来5年的主要研究方向是合成规范场和自旋轨道耦合。这些目标与当前多体理论和凝聚态物理的前沿有很强的联系,包括量子霍尔效应、拓扑绝缘体和强相关态。这些材料比普通材料具有更深刻的量子力学性质,因为它们利用了非平凡的量子力学相(几何相、贝里相)或量子纠缠。此外,计划探索流动铁磁性,使用绝热状态制备冷却到皮开尔文温度,以及钠-锂二聚体作为异核偶极分子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wolfgang Ketterle其他文献

Comment on the paper "Electromagnetic Wave Dynamics in Matter-Wave Superradiant Scattering" by L. Deng, M.G. Payne, and E.W. Hagley
  • DOI:
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wolfgang Ketterle
  • 通讯作者:
    Wolfgang Ketterle
Bose–Einstein condensation of atomic gases
原子气体的玻色-爱因斯坦凝聚
  • DOI:
    10.1038/416211a
  • 发表时间:
    2002-03-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    James R. Anglin;Wolfgang Ketterle
  • 通讯作者:
    Wolfgang Ketterle
Bose–Einstein condensation of atomic gases
原子气体的玻色-爱因斯坦凝聚
  • DOI:
    10.1038/416211a
  • 发表时间:
    2002-03-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    James R. Anglin;Wolfgang Ketterle
  • 通讯作者:
    Wolfgang Ketterle

Wolfgang Ketterle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wolfgang Ketterle', 18)}}的其他基金

A Program in Ultralow-Temperature Atomic Physics
超低温原子物理项目
  • 批准号:
    2208004
  • 财政年份:
    2022
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Standard Grant
Center for Ultracold Atoms
超冷原子中心
  • 批准号:
    1734011
  • 财政年份:
    2017
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Cooperative Agreement
Center for Ultracold Atoms
超冷原子中心
  • 批准号:
    1125846
  • 财政年份:
    2011
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Cooperative Agreement
A Program in Ultra-Low Temperature Atomic Physics
超低温原子物理项目
  • 批准号:
    0969731
  • 财政年份:
    2010
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Continuing Grant
Center for Ultracold Atoms
超冷原子中心
  • 批准号:
    0551153
  • 财政年份:
    2006
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Cooperative Agreement
A Program in Ultra-Low Temperature Atomic Physics
超低温原子物理项目
  • 批准号:
    0503076
  • 财政年份:
    2005
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Continuing Grant
A Program in Ultralow-Temperature Atomic Physics
超低温原子物理项目
  • 批准号:
    9987902
  • 财政年份:
    2000
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Continuing Grant
Atomic Quantum Gases
原子量子气体
  • 批准号:
    9501984
  • 财政年份:
    1995
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Continuing Grant

相似海外基金

A Program in Ultralow-Temperature Atomic Physics
超低温原子物理项目
  • 批准号:
    2208004
  • 财政年份:
    2022
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Standard Grant
Development of liquid state stationary phase for ultralow-temperature HPLC
超低温高效液相色谱液态固定相的研制
  • 批准号:
    18K19097
  • 财政年份:
    2018
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of ultralow-temperature measurement systems by Pomeranchuk cooling
Pomeranchuk冷却超低温测量系统的开发
  • 批准号:
    17K18747
  • 财政年份:
    2017
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Ultralow temperature thermometry with nanoscale devices
使用纳米级设备进行超低温测温
  • 批准号:
    EP/N019199/1
  • 财政年份:
    2016
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Research Grant
Fabrication of single-crystalline microspheres by laser irradiation at ultralow temperature
超低温激光照射制备单晶微球
  • 批准号:
    16H03884
  • 财政年份:
    2016
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum phase transition study by combination of ultrahigh-pressure, ultralow-temperature, fine control of magnetic field, and NMR
超高压、超低温、磁场精细控制和核磁共振相结合的量子相变研究
  • 批准号:
    26707018
  • 财政年份:
    2014
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Study on the clarification of a Coulomb ordered state of ultralow-temperature ion beams and the formation of crystalline beams
超低温离子束库仑有序态澄清及晶体束形成研究
  • 批准号:
    26400299
  • 财政年份:
    2014
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ultralow temperature and ultrahigh-resolution laser-based photoemission spectroscopy and investigation of the mechanism of exotic superconductors
超低温超高分辨率激光光电子能谱的发展及奇异超导体机理的研究
  • 批准号:
    25220707
  • 财政年份:
    2013
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Ultralow temperature resonant X-ray diffraction study of the mechanism of multipole ordering in f-electron systems.
f电子系统多极有序机制的超低温共振X射线衍射研究。
  • 批准号:
    21840059
  • 财政年份:
    2009
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Ultralow temperature freezer for archiving microbial evolution experiments
用于存档微生物进化实验的超低温冰箱
  • 批准号:
    390343-2010
  • 财政年份:
    2009
  • 资助金额:
    $ 320.22万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了