Attosecond Electron Synchrotron on a Nanoscale
纳米级阿秒电子同步加速器
基本信息
- 批准号:1506372
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intense laser light may bring some of the science and applications of large particle accelerators down to a moderate-size laboratory, making it accessible to a broader range of researchers and users in multiple fields of science and technology. From the radiation physics perspective, an advantage of lasers is their ability to generate unprecedentedly short (attosecond) pulses of ultraviolet and x-ray radiation. Even though the spatial scales are drastically different, the physics of emission by electrons in large-scale synchrotron facilities (major research tools for x-ray crystallography and materials science research) and by electrons undergoing acceleration at the surface of a solid under the influence of extreme-intensity light fields are, in an essential way, the same. The interaction of intense, ultrashort-pulsed light with solids results in target ionization and the momentary formation of something akin to a nanometer-sized "synchrotron" (the charged particles emit bursts of high-energy radiation within time intervals much shorter than the half-cycle of the driving light field). This process can be controlled by the details of how the incident light field waveforms evolve with time. Taming synchrotron-type electron trajectories in solids by specially prepared laser fields, and ensuring that the result is the emission of intense ultraviolet and x-ray radiation is the aim of this program.This program will explore the chance to enhance the intensity of coherent ultraviolet and x-ray emission from solids under extreme light fields by sub-cycle shaping of the driving laser pulse waveforms. The waveform shaping can be achieved through mixing the laser fundamental frequency with its second harmonic or higher frequency components. The effect of the energy distribution of different colors in the driving field as well as the phase delay between them on the radiation spectra will be studied. The program will seek the optimized solutions for driving waveforms, as well as the physical limits on the efficiency of the process. This study may provide new insight into the dynamics of field-controlled electron oscillations in laser-produced solid-density plasmas. Ultimately, this approach may offer higher attosecond pulse intensities than those currently achieved, opening a pathway to advance ultrafast metrology toward time-resolved x-ray pump-probe spectroscopy.
强激光可能会将大型粒子加速器的一些科学和应用带到中等规模的实验室,使其能够为多个科学和技术领域的更广泛的研究人员和用户所使用。从辐射物理学的角度来看,激光的一个优势是它们能够产生前所未有的短(阿秒)紫外线和X射线辐射脉冲。尽管空间尺度截然不同,但大型同步加速器设施(X射线晶体学和材料科学研究的主要研究工具)中电子的发射物理学和极端强度光场影响下固体表面加速的电子的发射物理学基本相同。强烈的超短脉冲光与固体的相互作用导致目标电离和类似于纳米大小的“同步加速器”的瞬间形成(带电粒子在比驱动光场的半周期短得多的时间间隔内发出高能辐射的爆发)。这个过程可以通过入射光场波形如何随时间演变的细节来控制。本项目的目标是通过特别准备的激光场来驯服固体中的同步加速器型电子轨迹,并确保其结果是强烈的紫外线和X射线辐射的发射。本项目将探索通过驱动激光脉冲波形的子周期整形来增强极端光场下固体中相干紫外线和X射线发射强度的机会。波形整形可以通过将激光基频与其二次谐波或更高频率分量混合来实现。研究了不同颜色在驱动场中的能量分布以及它们之间的相位延迟对辐射光谱的影响。该计划将寻求驱动波形的优化解决方案,以及对过程效率的物理限制。这项研究可能提供新的洞察力场控制的电子振荡的动力学在激光产生的固体密度等离子体。最终,这种方法可以提供比目前实现的阿秒脉冲强度更高的阿秒脉冲强度,从而打开了一条将超快计量推向时间分辨X射线泵浦探测光谱的途径。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holographic Plasma Lenses
- DOI:10.1103/physrevlett.128.065003
- 发表时间:2022-02-08
- 期刊:
- 影响因子:8.6
- 作者:Edwards, M. R.;Munirov, V. R.;Michel, P.
- 通讯作者:Michel, P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Mikhailova其他文献
Rapid Identification and Monitoring of Multiple Bacterial Infections Using Printed Nanoarrays
- DOI:
10.1002/adma.202211363 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Zeying Zhang;Yali Sun;Yaqi Yang;Xu Yang;Huadong Wang;Yang Yun;Xiangyu Pan;Zewei Lian;Artem Kuzmin;Ekaterina Ponkratova;Julia Mikhailova;Zian Xie;Xiaoran Chen;Qi Pan;Bingda Chen;Hongfei Xie;Tingqing Wu;Sisi Chen;Jimei Chi;Fangyi Liu;Dmitry Zuev;Meng Su;Yan - 通讯作者:
Yan
Julia Mikhailova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Mikhailova', 18)}}的其他基金
Relativistic Plasma Optics with Structured Light
结构光相对论等离子体光学
- 批准号:
2206711 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modified Plasma Mirrors to Maximize Efficiency of High Harmonic Generation in Solids
改进的等离子镜可最大限度地提高固体中高次谐波产生的效率
- 批准号:
1806911 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Muon--electron转换过程的实验研究
- 批准号:11335009
- 批准年份:2013
- 资助金额:360.0 万元
- 项目类别:重点项目
相似海外基金
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
RGPIN-2018-06752 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Observation of atomic charges in organic microcrystals by synchrotron and electron beam sources
通过同步加速器和电子束源观察有机微晶中的原子电荷
- 批准号:
22K14557 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthesize of magnetic nano particles based on information of chemical reaction behavior by electron microscopy and synchrotron, characteristic prediction
基于电子显微镜和同步加速器化学反应行为信息的磁性纳米颗粒合成及特性预测
- 批准号:
21K04843 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
RGPIN-2018-06752 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
RGPIN-2018-06752 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
522730-2018 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
RGPIN-2018-06752 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
RGPIN-2018-06752 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Low Emittance Electron Beam Generation for Ultra Brilliant Synchrotron Radiation Sources
用于超亮同步加速器辐射源的低发射电子束生成
- 批准号:
522730-2018 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Advanced Control Systems for Fast-Orbit Feedback (FOFB) of the Electron Beam in the Diamond Synchrotron
用于金刚石同步加速器中电子束快速轨道反馈 (FOFB) 的先进控制系统
- 批准号:
2120259 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Studentship