Modified Plasma Mirrors to Maximize Efficiency of High Harmonic Generation in Solids
改进的等离子镜可最大限度地提高固体中高次谐波产生的效率
基本信息
- 批准号:1806911
- 负责人:
- 金额:$ 31.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plasma mirrors -- microscopically small, momentary light reflectors formed by high-power laser beams irradiating and ionizing solid surfaces -- are powerful photonic devices for manipulating light that is too intense to be handled by conventional optics. Not only can plasma mirrors redirect and focus high-power light, they can also serve as ultrafast nonlinear filters suppressing unwanted noise in pulsed laser beams, and as generators of frequencies from terahertz to x-rays for applications that are beyond the reach of current light sources. Using micro- and nano-structures as well as ultralight materials as a base for transient plasma mirrors can potentially make them more efficient, enhance their light modification properties, and add new functionalities to advance x-ray biomedical imaging and ultrafast metrology. This project investigates how novel material structures can affect intense laser-plasma interactions and the efficiency of frequency up-conversion by plasma mirrors to produce higher energies of the radiation.The efficiency of high-order-harmonic emission from overdense relativistic laser-produced plasmas scales with the ratio of laser field strength to plasma density as a result of the balance of forces that produces emitting relativistic electrons. Condensed-phase materials that are fully ionized by ultrahigh-contrast laser beams tend to be too dense for all but the most powerful laser systems to reach the condition of high efficiency. One way of reducing the effective density of the plasma, while keeping a steep density gradient, is to make plasma thinner by using a free-standing nanometer-scale foil, such as multi-layer graphene, as a base material; another way is to use an ultralight nanoporous material. The aim of this project is to study the behavior of femtosecond light pulses at multi-terawatt peak powers focused down to a few micrometers in the interaction with dense relativistic laser-produced plasmas. These plasmas will be created in materials with micro- and nanoscale structure, such as v-grooves, free-standing nanometer foils, and aerogels. Experiments and numerical simulations will be developed for a variety of material structures. This research will achieve fundamental understanding of frequency up-conversion in plasma mirrors and the potential of structured and ultralight materials to maximize its efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
等离子体镜--由高功率激光束照射和电离固体表面形成的微小的瞬时光反射器--是强大的光子器件,用于操纵传统光学器件无法处理的太强的光。等离子体镜不仅可以重定向和聚焦高功率光,还可以作为超快非线性滤波器,抑制脉冲激光束中不必要的噪声,并作为频率从太赫兹到x射线的发生器,用于当前光源无法达到的应用。使用微米和纳米结构以及超轻材料作为瞬态等离子体镜的基础,可以使它们更有效,增强它们的光修改特性,并增加新的功能,以推进X射线生物医学成像和超快计量。 本计画研究新颖的材料结构如何影响强烈的雷射-电浆交互作用,以及电浆镜产生更高能量辐射的频率上转换效率。超高密度相对论雷射产生电浆的高次谐波发射效率与雷射场强度与电浆密度的比例成比例,因为产生发射相对论电子的力的平衡。被超高对比度激光束完全电离的凝聚相材料往往太密集,除了最强大的激光系统之外,所有激光系统都无法达到高效率的条件。降低等离子体的有效密度,同时保持陡峭的密度梯度的一种方法是通过使用独立的纳米级箔(例如多层石墨烯)作为基础材料来使等离子体更薄;另一种方法是使用超轻的纳米多孔材料。该项目的目的是研究飞秒光脉冲的行为,在几个太瓦的峰值功率聚焦到几微米的相互作用与密集的相对论激光产生的等离子体。 这些等离子体将在具有微米和纳米级结构的材料中产生,例如v形槽,独立的纳米箔和气凝胶。将针对各种材料结构开发实验和数值模拟。这项研究将实现对等离子体镜频率上转换的基本理解,以及结构和超轻材料的潜力,以最大限度地提高其效率。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-Power Ultraviolet Vortex Beams Generated from a Relativistic Laser Interacting with an Ultrathin Foil
相对论激光与超薄箔相互作用产生的高功率紫外涡旋光束
- DOI:10.1364/cleo_qels.2021.ftu1k.4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fasano, N. M.;Mikhailova, J. M.
- 通讯作者:Mikhailova, J. M.
A multi-terawatt two-color beam for high-power field-controlled nonlinear optics
用于高功率场控非线性光学的多太瓦双色光束
- DOI:10.1364/ol.403806
- 发表时间:2020
- 期刊:
- 影响因子:3.6
- 作者:Edwards, M. R.;Fasano, N. M.;Bennett, T.;Griffith, A.;Turley, N.;O’Brien, B. M.;Mikhailova, J. M.
- 通讯作者:Mikhailova, J. M.
The X-Ray Emission Effectiveness of Plasma Mirrors: Reexamining Power-Law Scaling for Relativistic High-Order Harmonic Generation
- DOI:10.1038/s41598-020-61255-0
- 发表时间:2020-03-20
- 期刊:
- 影响因子:4.6
- 作者:Edwards, Matthew R.;Mikhailova, Julia M.
- 通讯作者:Mikhailova, Julia M.
Holographic Plasma Lenses
- DOI:10.1103/physrevlett.128.065003
- 发表时间:2022-02-08
- 期刊:
- 影响因子:8.6
- 作者:Edwards, M. R.;Munirov, V. R.;Michel, P.
- 通讯作者:Michel, P.
Laser-driven plasma sources of intense, ultrafast, and coherent radiation
- DOI:10.1063/5.0031459
- 发表时间:2021-01-01
- 期刊:
- 影响因子:2.2
- 作者:Edwards, Matthew R.;Fisch, Nathaniel J.;Mikhailova, Julia M.
- 通讯作者:Mikhailova, Julia M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Mikhailova其他文献
Rapid Identification and Monitoring of Multiple Bacterial Infections Using Printed Nanoarrays
- DOI:
10.1002/adma.202211363 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Zeying Zhang;Yali Sun;Yaqi Yang;Xu Yang;Huadong Wang;Yang Yun;Xiangyu Pan;Zewei Lian;Artem Kuzmin;Ekaterina Ponkratova;Julia Mikhailova;Zian Xie;Xiaoran Chen;Qi Pan;Bingda Chen;Hongfei Xie;Tingqing Wu;Sisi Chen;Jimei Chi;Fangyi Liu;Dmitry Zuev;Meng Su;Yan - 通讯作者:
Yan
Julia Mikhailova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Mikhailova', 18)}}的其他基金
Relativistic Plasma Optics with Structured Light
结构光相对论等离子体光学
- 批准号:
2206711 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
Attosecond Electron Synchrotron on a Nanoscale
纳米级阿秒电子同步加速器
- 批准号:
1506372 - 财政年份:2015
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
相似国自然基金
旁轴式plasma-pulsed MIG复合焊电弧、熔滴、贯穿小孔和熔池的耦合机理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
- 批准号:
EP/Y035038/1 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Research Grant
Participant Support for 2024 Gordon Research Conference on Plasma Processing Science (GRC-PPS); Andover, New Hampshire; 21-26 July 2024
2024 年戈登等离子体加工科学研究会议 (GRC-PPS) 的参与者支持;
- 批准号:
2414674 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
Plasma-safe-seqs技術を用いた乳癌再発の早期診断法の確立
利用plasma-safe-seqs技术建立乳腺癌复发早期诊断方法
- 批准号:
24K19341 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Plasma-modified peptides/proteins for multi-target anticancer treatment
用于多靶点抗癌治疗的血浆修饰肽/蛋白质
- 批准号:
23K22483 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Gas measurement for air plasma generators
空气等离子发生器的气体测量
- 批准号:
10090661 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Collaborative R&D
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
- 批准号:
EP/Y001877/1 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Research Grant
Cellular Ageing: Is the Plasma Membrane the Control Hub?
细胞衰老:质膜是控制中心吗?
- 批准号:
DP240103193 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Discovery Projects
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
EU-Funded
Novel and efficient microwave plasma furnace for processing and syngas production
用于加工和合成气生产的新型高效微波等离子炉
- 批准号:
ST/Y509966/1 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Research Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
- 批准号:
2339518 - 财政年份:2024
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant