CDMR: Tuning the Mechanical Properties of Ordered Supramolecular Polymers and Their Networks

CDMR:调节有序超分子聚合物及其网络的机械性能

基本信息

  • 批准号:
    1506937
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

PART1: NON-TECHNICAL SUMMARYSupramolecular polymers represent a new generation of polymeric materials, offering advantageous properties in processing, self-healing, and recycling, and have important technological applications as both electronically and biological active materials. Possessing the fundamental knowledge that would enable the precise tuning of the mechanical properties at the polymer molecular and network level could lead to a significant shift in the way that supramolecular materials are designed. This project is in the general area of Computationally and Data-Driven Materials Research (CDMR). It aims to develop an in-depth understanding of the various factors that affect the cooperative association of small molecular building units into supramolecular polymers, and to use the knowledge gained to achieve precise control over the mechanical properties of individual polymers as well as their 3D networks. A combined use of experimental and computational methodologies will help elucidate the key features of these building units for precise control over the mechanical properties of the resulting supramolecular polymers. Prediction of the pathway of self-assembly is proposed with molecular modeling at multiple length-scales. Knowledge generated from this work will impact the development of advanced materials for applications in organic electronics, where the polymer length and inter-polymer associations are important, and in regenerative medicine, which requires biologically active hydrogels with defined stiffness. The two PIs bring complementary experimental and theoretical/computational expertise to this integrated project and are committed to providing a broad educational experience at all levels.PART 2: TECHNICAL SUMMARYThe formation of ordered supramolecular polymers (SPs), utilizing small molecular building units that can assemble into highly ordered and discrete one-dimensional (1D) nanostructures, has led to the development of functional supramolecular materials. This project is in the general area of Computationally and Data-Driven Materials Research (CDMR) and is focused on in-depth understanding of the various factors that affect the cooperative association of small molecular building units. It aims to design and synthesize a series of small-molecule mikto-arm star building units (MASBUs) possessing three distinct functional arms (two hydrophobic and one hydrophilic), and to elucidate the key molecular design features that define their growth kinetics and eventual mechanical properties of ordered SPs. A combined experimental and computational approach with an active feedback mechanism will be applied to correlate the sequential variation of each arm with the mechanical properties (persistence length, contour length, bundling) of the resulting SPs and their networks. Specifically, Objectives 1 and 2 will focus on the synthesis and study of MASBUs possessing isomeric hydrocarbons and pi-conjugated segments, respectively, aiming to determine the relationship between the internal packing order and the persistence length. Objective 3 aims to establish a correlation between the growth kinetics and the contour length by varying the strength of associative interactions within a peptide segment capable of forming intermolecular hydrogen bonding. Objective 4 will attempt to identify the key factors that determine the bulk mechanical properties of the supramolecular networks formed by the assembled SPs, in particular looking at the effect of the persistence and contour length and also the SP bundling. A successful outcome will lead to significant advances in our fundamental knowledge of structure-property relationships in ordered SP systems, and could have a substantial impact on the creation of supramolecular materials. The two PIs bring complementary experimental and theoretical/computational expertise to this integrated project and are committed to providing a broad educational experience at all levels.
第一部分:非技术概述超分子聚合物代表了新一代的聚合物材料,在加工、自修复和回收方面提供了有利的性能,并且作为电子和生物活性材料具有重要的技术应用。拥有能够在聚合物分子和网络水平上精确调节机械性能的基础知识可能会导致超分子材料设计方式的重大转变。该项目是在计算和数据驱动的材料研究(CDMR)的一般领域。 它旨在深入了解影响小分子结构单元合作缔合成超分子聚合物的各种因素,并利用所获得的知识实现对单个聚合物及其3D网络的机械性能的精确控制。实验和计算方法的结合使用将有助于阐明这些建筑单元的关键特征,以精确控制所得超分子聚合物的机械性能。提出了在多个长度尺度下的分子模拟预测自组装的途径。从这项工作中产生的知识将影响先进材料在有机电子产品中的应用,其中聚合物长度和聚合物间的关联是重要的,并在再生医学中,这需要具有定义的刚度的生物活性水凝胶的发展。这两个PI带来互补的实验和理论/计算专业知识,这个综合项目,并致力于提供广泛的教育经验,在所有level.Part 2:技术总结有序超分子聚合物(SP)的形成,利用小分子建筑单元,可以组装成高度有序和离散的一维(1D)纳米结构,导致了功能超分子材料的发展。该项目属于计算和数据驱动材料研究(CDMR)的一般领域,重点是深入了解影响小分子构建单元合作关联的各种因素。 它的目的是设计和合成一系列的小分子杂臂星星建筑单位(MASBU)拥有三个不同的功能臂(两个疏水性和一个亲水性),并阐明关键的分子设计特征,定义其生长动力学和最终的机械性能的有序SP。一个结合实验和计算的方法与主动反馈机制将被应用到相关的每个臂的机械性能(持久性长度,轮廓长度,捆绑)的SP和它们的网络的顺序变化。具体而言,目标1和2将分别集中于具有异构烃和π共轭链段的MASBU的合成和研究,旨在确定内部堆积顺序与持久长度之间的关系。目的3旨在通过改变能够形成分子间氢键的肽段内的缔合相互作用的强度来建立生长动力学和轮廓长度之间的相关性。目标4将试图确定的关键因素,确定由组装的SP形成的超分子网络的整体机械性能,特别是看持久性和轮廓长度的效果,也SP捆绑。 一个成功的结果将导致显着的进步,我们的基本知识的结构-性能关系的有序SP系统,并可能产生重大影响的超分子材料的创建。 这两个PI为这个综合项目带来了互补的实验和理论/计算专业知识,并致力于在各级提供广泛的教育经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honggang Cui其他文献

A new flavone glycoside from the fruits of <em>Luffa cylindrica</em>
  • DOI:
    10.1016/j.fitote.2007.05.004
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qizhen Du;Honggang Cui
  • 通讯作者:
    Honggang Cui
High-affinity peptide biomaterials
高亲和力肽生物材料
Tiny Object Detection via Regional Cross Self-Attention Network
Therapeutic supramolecular polymers: Designs and applications
治疗性超分子聚合物:设计与应用
  • DOI:
    10.1016/j.progpolymsci.2023.101769
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    26.100
  • 作者:
    Han Wang;Jason Mills;Boran Sun;Honggang Cui
  • 通讯作者:
    Honggang Cui
Photo-Conversion of Higher-Order Structures Composed of Peptide Amphiphiles and Its Biological Application
肽两亲物高阶结构的光转换及其生物学应用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takahiro Muraoka;Chung-Yan Koh;Honggang Cui;Samuel I. Stupp
  • 通讯作者:
    Samuel I. Stupp

Honggang Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honggang Cui', 18)}}的其他基金

Collaborative Research: DMREF: GOALI: High-Affinity Supramolecular Peptide Materials for Selective Capture and Recovery of Proteins
合作研究:DMREF:GOALI:用于选择性捕获和回收蛋白质的高亲和力超分子肽材料
  • 批准号:
    2119653
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Well-Defined Polyelectrolyte Nanocages via Crystallized Miniemulsion Nanodroplets
合作研究:通过结晶细乳液纳米滴形成明确的聚电解质纳米笼
  • 批准号:
    1412985
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Self-Assembly of Anti-Cancer Drugs into Well-Defined Supramolecular Nanostructures
职业:抗癌药物自组装成明确的超分子纳米结构
  • 批准号:
    1255281
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似海外基金

Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
  • 批准号:
    2411680
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Projects
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015858/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015955/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
  • 批准号:
    BB/Y514032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
  • 批准号:
    24K20737
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning into plant development to improve the sustainability of arable farming
调整植物开发以提高耕作的可持续性
  • 批准号:
    MR/Y011708/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了