CAREER: Self-Assembly of Anti-Cancer Drugs into Well-Defined Supramolecular Nanostructures

职业:抗癌药物自组装成明确的超分子纳米结构

基本信息

  • 批准号:
    1255281
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

This Career Award by the Biomaterials Program in the Division of Materials Research to Johns Hopkins University will support the development of new strategies to direct the self-assembly of anticancer drugs into supramolecular nanostructures with well-defined structural features for increased drug loading capacities. Current approaches for the delivery of cancer chemotherapeutics in using nanoscale carriers through encapsulation within liposomes or polymeric nanoparticles, or by conjugation to hydrophilic polymers tend to modify the drug's pharmacokinetic properties and biodistribution. Additionally, there are inherent difficulties in achieving a high and quantitative drug loading per carrier. This project explores the potential molecular interactions that drug molecules can offer for self-assembly into a variety of nanostructures, and seeks to understand how these supramolecular nanostructures affect the ability of the system to release their therapeutic payloads. The quantitative drug loading in the prepared nanostructures would be ensured by the very nature of themolecular design features. Notably, the proposed drug delivery system does not require any additional carriers, easing potential concerns associated with the long term toxicity of synthetic drug carriers. Since targeted drug delivery and controlled release are the foundations in the development of effective chemotherapies for tumor treatments, the fundamental knowledge developed from the proposed research activities will open new avenues for cancer chemotherapies. The proposed education plan aims to promote training, learning, and teaching of students at all levels, and broadening the participation of students from underrepresented groups in the Baltimore City Public School system. For K-12 students in particular, the provision of an experiential learning opportunity in drug delivery research would spark their interest in science, and helps in creating the next generation of young scientists.Chemotherapy is currently the most effective method available for the treatment of metastatic cancers, producing the highest survival and cure rates. The toxicity of anticancer drugs to healthy cells, however, requires the development of methodologies that can deliver these drugs exclusively to the tumor sites at higher doses. A successful delivery strategy promises immense benefits through both the reduction of side-effects and a greater treatment efficacy. Accordingly, the creation of nano-sized vehicles for the effective delivery of hydrophobic anticancer drugs to tumor sites has garnered justifiable attention in cancer chemotherapy research for several decades. A fundamental limitation of this strategy, however, is the difficulty in achieving a high and quantitative drug loading content per carrier. Also, concerns regarding the short-term and long-term toxicities of the synthetic nanomaterial carriers other than the drugs to be delivered often lead to exhaustive preclinical evaluation, representing a difficult hurdle for the drug's translation into clinical use.The proposed work aims to address these challenges though the development of delivery vehicles made of anticancer drugs themselves. Such drug nanostructures would contain a specific drug content, and do not require the use of additional drug carriers.The multidisciplinary nature of drug delivery research provides ample opportunities for education and outreach.The proposed educational plan is expected to have a significant impact on the interests and STEM careers of participating students. With programs designed to educate and provide hands-on research experience, the plan aims to increase interest in the pursuit of higher education and doctoral studies of STEM for high school and undergraduate students respectively. These experiences will reinforce their interests in the various science related disciplines and boost confidence in their abilities through programs that focus on creative problem solving and teamwork, such as the proposed Engineering Innovation initiative.
该职业奖由约翰霍普金斯大学材料研究部生物材料项目颁发,将支持开发新的策略,以指导抗癌药物自组装成具有明确结构特征的超分子纳米结构,以增加药物负载能力。目前用于递送癌症化疗剂的方法是使用纳米级载体,通过包封在脂质体或聚合物纳米颗粒内,或通过与亲水性聚合物缀合,倾向于改变药物的药代动力学性质和生物分布。此外,在实现每个载体的高和定量药物负载方面存在固有的困难。该项目探讨了药物分子可以提供自组装成各种纳米结构的潜在分子相互作用,并试图了解这些超分子纳米结构如何影响系统释放其治疗有效载荷的能力。所制备的纳米结构中的定量药物负载将通过分子设计特征的性质来确保。值得注意的是,所提出的药物递送系统不需要任何额外的载体,减轻了与合成药物载体的长期毒性相关的潜在问题。由于靶向给药和控释是开发有效的肿瘤化疗药物的基础,因此从拟议的研究活动中开发的基础知识将为癌症化疗开辟新的途径。拟议的教育计划旨在促进各级学生的培训、学习和教学,并扩大巴尔的摩市公立学校系统中代表性不足群体的学生的参与。特别是对于K-12学生来说,提供药物输送研究的体验式学习机会将激发他们对科学的兴趣,并有助于培养下一代年轻科学家。化疗是目前治疗转移性癌症最有效的方法,具有最高的生存率和治愈率。然而,抗癌药物对健康细胞的毒性需要开发能够以更高剂量将这些药物专门递送到肿瘤部位的方法。一个成功的交付策略承诺通过减少副作用和更大的治疗效果的巨大好处。因此,几十年来,用于将疏水性抗癌药物有效递送至肿瘤部位的纳米尺寸载体的创建在癌症化疗研究中获得了合理的关注。然而,这种策略的基本限制是难以实现每个载体的高和定量的药物负载含量。此外,关于合成纳米材料载体的短期和长期毒性的担忧,而不是要交付的药物,往往导致详尽的临床前评估,代表了药物转化为临床使用的一个困难的障碍。拟议的工作旨在通过开发抗癌药物本身制成的交付载体来解决这些挑战。这种药物纳米结构将包含特定的药物含量,并且不需要使用额外的药物载体。药物输送研究的多学科性质为教育和外展提供了充足的机会。拟议的教育计划预计将对参与学生的兴趣和STEM职业产生重大影响。通过旨在教育和提供实践研究经验的计划,该计划旨在提高高中生和本科生分别追求STEM高等教育和博士研究的兴趣。这些经验将加强他们对各种科学相关学科的兴趣,并通过专注于创造性解决问题和团队合作的计划,如拟议的工程创新计划,增强他们对自己能力的信心。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Utilizing the Hofmeister Effect to Induce Hydrogelation of Nonionic Supramolecular Polymers into a Therapeutic Depot
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honggang Cui其他文献

A new flavone glycoside from the fruits of <em>Luffa cylindrica</em>
  • DOI:
    10.1016/j.fitote.2007.05.004
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qizhen Du;Honggang Cui
  • 通讯作者:
    Honggang Cui
High-affinity peptide biomaterials
高亲和力肽生物材料
Tiny Object Detection via Regional Cross Self-Attention Network
Therapeutic supramolecular polymers: Designs and applications
治疗性超分子聚合物:设计与应用
  • DOI:
    10.1016/j.progpolymsci.2023.101769
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    26.100
  • 作者:
    Han Wang;Jason Mills;Boran Sun;Honggang Cui
  • 通讯作者:
    Honggang Cui
Photo-Conversion of Higher-Order Structures Composed of Peptide Amphiphiles and Its Biological Application
肽两亲物高阶结构的光转换及其生物学应用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takahiro Muraoka;Chung-Yan Koh;Honggang Cui;Samuel I. Stupp
  • 通讯作者:
    Samuel I. Stupp

Honggang Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honggang Cui', 18)}}的其他基金

Collaborative Research: DMREF: GOALI: High-Affinity Supramolecular Peptide Materials for Selective Capture and Recovery of Proteins
合作研究:DMREF:GOALI:用于选择性捕获和回收蛋白质的高亲和力超分子肽材料
  • 批准号:
    2119653
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CDMR: Tuning the Mechanical Properties of Ordered Supramolecular Polymers and Their Networks
CDMR:调节有序超分子聚合物及其网络的机械性能
  • 批准号:
    1506937
  • 财政年份:
    2015
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Well-Defined Polyelectrolyte Nanocages via Crystallized Miniemulsion Nanodroplets
合作研究:通过结晶细乳液纳米滴形成明确的聚电解质纳米笼
  • 批准号:
    1412985
  • 财政年份:
    2014
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Self-shrinkers的刚性及相关问题
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
  • 批准号:
    81501521
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
  • 批准号:
    11301190
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
  • 批准号:
    11126152
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
  • 批准号:
    81001041
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
  • 批准号:
    31070711
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2411677
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
  • 批准号:
    2240000
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CAREER: Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly
职业:开环聚合诱导结晶驱动的自组装
  • 批准号:
    2238834
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Programmable control of biomolecular condensate self-assembly
职业:生物分子凝聚体自组装的可编程控制
  • 批准号:
    2143670
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Stimuli-Responsive Self-Assembly of Supramolecular Block Copolymers: Hierarchical Structures and Kinetic Pathways
职业:超分子嵌段共聚物的刺激响应自组装:层次结构和动力学途径
  • 批准号:
    2144997
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Decoding Crystal Growth and Phase Transformations of Complex Structures With Minimalist Self-Assembly Models
职业:用极简自组装模型解码复杂结构的晶体生长和相变
  • 批准号:
    2144094
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Functional Fouling of Surfaces by Interfacial Silk Fibroin Self-Assembly
职业:通过界面丝素蛋白自组装实现表面功能性污垢
  • 批准号:
    2045510
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2045506
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Engineering Self-Assembly of Recombinant Fusion Proteins for Bottom-Up Construction of Protein-Powered Synthetic Protocells
职业:重组融合蛋白的工程自组装,用于自下而上构建蛋白质驱动的合成原始细胞
  • 批准号:
    2045313
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
CAREER: Self-Assembly and Structure in Organic Mixtures
职业:有机混合物中的自组装和结构
  • 批准号:
    1847340
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了