Actions on cube complexes and homomorphisms to families of groups

对立方体复合体和群族同态的作用

基本信息

  • 批准号:
    1507067
  • 负责人:
  • 金额:
    $ 42.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1507067, Principal Investigator: Daniel GrovesA group is an algebraic object which encodes the symmetries of a geometric object. This connection between geometry and algebra implies that the study of groups provides an algebraic language and a set of techniques for studying problems throughout geometry. In recent years, some of the most important problems in three-dimensional geometry (such as the Virtual Haken Conjecture on the structure of spaces that cover three-dimensional manifolds) have been solved by a combination of group theory and geometric properties of two-dimensional submanifolds of these spaces. Some of the names associated to this line of work are Agol, Wise, Kahn, Markovic, Haglund, Hsu, Bergeron, and Manning.A major focus of the first half of this project is to broaden the range of applications of the available theory, and to apply these new tools to many more problems in geometry and group theory. In the second half of this project, techniques will be developed to study problems about maps between families of groups. Again, problems from three-dimensional geometry will give key motivation. Due to the work of Agol and many others, the objects in this setting are now quite well understood. However, there are many fundamental questions about the maps between these objects, and this proposal will tackle some of these problems, as well as building a general toolkit for studying questions such as these. In the first half of the project, we study hyperbolic groups acting cocompactly on CAT(0) cube complexes. In the case that the cell stabilizers are finite, Agol's famous theorem implies that such a group is "virtually special" (an important concept introduced by Haglund and Wise) which implies many strong properties, such as linearity and strong residual finiteness properties for such a group. In the case of a one-dimensional complex (a tree), if the cell stabilizers are infinite but quasi-convex and virtually special, then Wise's Quasiconvex Hierarchy Theorem implies that the hyperbolic group is again virtually special. The main goal of the first half of this project is to prove a simultaneous generalization of these two theorems: If a hyperbolic group G acts cocompactly on a CAT(0) cube complex with quasi- convex and virtually special cell stabilizers, then G is virtually special. This will have many applications to relatively hyperbolic and hyperbolic groups acting on cube complexes. In the second half of this proposal, we will develop a quite general framework for studying the set of a maps from an arbitrary finitely generated group into natural families of groups. Examples of such families which will be studied include: Kleinian groups, arbitrary three-manifold groups, relatively hyperbolic and acylindrically hyperbolic groups, and others.
[摘要]获奖:DMS 1507067,首席研究员:Daniel GrovesA群是对几何对象的对称性进行编码的代数对象。几何和代数之间的这种联系意味着群的研究提供了一种代数语言和一套研究几何问题的技术。近年来,三维几何中的一些最重要的问题(如关于覆盖三维流形的空间结构的虚哈肯猜想)已经通过将群论和这些空间的二维子流形的几何性质相结合来解决。与这一行工作相关的一些名字是Agol, Wise, Kahn, Markovic, Haglund, Hsu, Bergeron和Manning。本项目前半部分的主要重点是扩大现有理论的应用范围,并将这些新工具应用于几何和群论中的更多问题。在这个项目的后半部分,将开发技术来研究关于族群之间的地图问题。同样,来自三维几何的问题将提供关键的动机。由于Agol和其他许多人的工作,这种设置中的对象现在已经很好地理解了。然而,关于这些对象之间的映射存在许多基本问题,本提案将解决其中的一些问题,并为研究这些问题建立一个通用工具包。在项目的前半部分,我们研究了紧作用于CAT(0)立方配合物上的双曲群。在细胞稳定剂是有限的情况下,Agol的著名定理意味着这样的群是“实际上特殊的”(Haglund和Wise引入的一个重要概念),这意味着这样的群具有许多强性质,如线性和强剩余有限性。在一维复合体(树)的情况下,如果单元稳定器是无限的,但是是拟凸的,并且实际上是特殊的,那么Wise的拟凸层次定理意味着双曲群也是实际上是特殊的。本课题前半部分的主要目标是证明这两个定理的一个同时推广:如果一个双曲群G紧作用于一个具有拟凸和虚特殊元稳定器的CAT(0)立方复上,则G是虚特殊的。这对于作用于立方体配合物的相对双曲和双曲群有许多应用。在本提案的后半部分,我们将开发一个相当通用的框架,用于研究从任意有限生成群到自然群族的映射集。这些族的例子将被研究包括:Kleinian群,任意三流形群,相对双曲和非圆柱双曲群,等等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Groves其他文献

CI-545-04 SINGLE CENTER OUTCOMES OF LEAD EXTRACTION IN PATIENTS WITH SEVERE TRICUSPID REGURGITATION
  • DOI:
    10.1016/j.hrthm.2022.03.676
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Syed Rafay Ali Sabzwari;James Arthur Mann;Lukasz Cerbin;Christopher Barrett;Amneet Sandhu;Paul D. Varosy;Jason West;Lohit Garg;Alexis Z. Tumolo;Michael A. Rosenberg;Wendy S. Tzou;Daniel Groves;Muhammad Aftab;Ryan G. Aleong;Matthew M. Zipse
  • 通讯作者:
    Matthew M. Zipse
PO-05-126 strongA SHOCKING TURN OF EVENTS: PRIMARY CARDIAC LYMPHOMA AS A RARE CAUSE FOR SUDDEN CARDIAC DEATH/strong
PO-05-126 惊人的事件转折:原发性心脏淋巴瘤作为突发心脏死亡的罕见原因
  • DOI:
    10.1016/j.hrthm.2023.03.1433
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Maeveen Riordan;Justin Edward;Shaun Webb;Lohit Garg;Daniel Groves;Syed Rafay Ali Sabzwari;Muhammad Aftab;Alexis Z. Tumolo
  • 通讯作者:
    Alexis Z. Tumolo
PROGNOSIS AND RADIATION DOSE OF ULTRA-LOW DOSE (ULD) STRESS-ONLY MYOCARDIAL PERFUSION SPECT IN PATIENTS WITH CHEST PAIN USING A HIGH-EFFICIENCY CAMERA
  • DOI:
    10.1016/s0735-1097(15)61248-7
  • 发表时间:
    2015-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Jeffrey Einstein;Lynne Johnson;Albert DeLuca;Andrew Kontak;Daniel Groves;Jennifer Stant;Ted Pozniakoff;Bin Cheng;Leroy Rabbani;Sabahat Bokhari
  • 通讯作者:
    Sabahat Bokhari
CHAGAS CARDIOMYOPATHY PRESENTING AS VENTRICULAR TACHYCARDIA
  • DOI:
    10.1016/s0735-1097(21)03425-2
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Jessica Parr;Christine Sailer;Daniel Groves;Amber Khanna;Alexis Tumolo
  • 通讯作者:
    Alexis Tumolo
REVERSIBLE SEVERE RIGHT HEART FAILURE AND TRICUSPID REGURGITATION FROM THYROTOXICOSIS
  • DOI:
    10.1016/s0735-1097(17)35564-x
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Tushar Acharya;Andrew Arai;Christine Mancini;Daniel J. Schwartz;Daniel Groves;W. Patricia Bandettini;Sujata Shanbhag
  • 通讯作者:
    Sujata Shanbhag

Daniel Groves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Groves', 18)}}的其他基金

Boundaries of Groups
群体的界限
  • 批准号:
    2203343
  • 财政年份:
    2022
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Standard Grant
Actions of Relatively Hyperbolic Groups on Cube Complexes
立方复形上相对双曲群的作用
  • 批准号:
    1904913
  • 财政年份:
    2019
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Continuing Grant
CAREER: Surface bundles and logic in geometric group theory
职业:几何群论中的面丛和逻辑
  • 批准号:
    0953794
  • 财政年份:
    2010
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Continuing Grant
Homomorphisms to hyperbolic and mapping class groups
双曲同态和映射类群
  • 批准号:
    0804365
  • 财政年份:
    2008
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0813863
  • 财政年份:
    2007
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0504251
  • 财政年份:
    2005
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Standard Grant

相似国自然基金

车用Al-Mg-Si-Zr合金Cube织构演变规律及高成形性机理
  • 批准号:
    JCZRLH202500854
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于代数攻击的序列密码逆向分析方法研究
  • 批准号:
    61602510
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
分组密码代数旁路攻击技术研究
  • 批准号:
    61173191
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
密码算法的高阶差分分析与可证明安全性
  • 批准号:
    61073149
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目
基于路径计算的XML Cube新型数据模型研究
  • 批准号:
    61072091
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

EO4AgroClimate: VISualisation and Assessment of water quality using an Open Data Cube FOR the weStern English chAnnel - Vis4Sea.
EO4AgroClimate:使用西方英语频道 Vis4Sea 的开放数据立方体进行水质可视化和评估。
  • 批准号:
    ST/Y003039/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Research Grant
Research on integrable two-dimensional partial difference equations using the theory of consistency around a cube property
基于立方体性质的一致性理论研究可积二维偏差分方程
  • 批准号:
    23K03145
  • 财政年份:
    2023
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CUBE: A Collaborative Undergraduate Biostatistics Experience to Diversify and Bring Awareness to the Field of Collaborative Biostatistics
CUBE:一种协作性本科生生物统计学体验,旨在多样化并提高对协作生物统计学领域的认识
  • 批准号:
    10682187
  • 财政年份:
    2023
  • 资助金额:
    $ 42.07万
  • 项目类别:
Proposal of Cube Machining Test Method Based on Form-Shaping-Functinon Theory for Machine Tools
基于形-形-函数理论的机床立方体加工测试方法的提出
  • 批准号:
    22H01382
  • 财政年份:
    2022
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
競技中のパフォーマンス要因の分析からコンディションの変化を予測できるか?
能否通过分析比赛中的表现因素来预测状态的变化?
  • 批准号:
    22K17727
  • 财政年份:
    2022
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Harmonic Analysis on the Hamming Cube
汉明立方的调和分析
  • 批准号:
    2152346
  • 财政年份:
    2021
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Standard Grant
COVID-19 in the urban built environment (CUBE): Evaluating the use of environmental swabs for the detection and surveillance of SARS-CoV-2 in school and congregate settings
城市建筑环境中的 COVID-19 (CUBE):评估环境拭子在学校和聚集场所检测和监测 SARS-CoV-2 中的使用情况
  • 批准号:
    459201
  • 财政年份:
    2021
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Operating Grants
Egg-in-Cube:超長時間ライブイメージングと微細力学操作の統合と展開
Egg-in-Cube:超长期实时成像和微机械操纵的集成和发展
  • 批准号:
    21H01277
  • 财政年份:
    2021
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of a multi-organ interaction model via the controlled vascularisation of modular organoids
通过模块化类器官的受控血管化构建多器官相互作用模型
  • 批准号:
    21K18048
  • 财政年份:
    2021
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D culture platform for organoid morphogenesis with three-dimensional control of cell distribution and large scale imaging using a cube device
用于类器官形态发生的 3D 培养平台,可使用立方体设备对细胞分布进行三维控制和大规模成像
  • 批准号:
    21K18061
  • 财政年份:
    2021
  • 资助金额:
    $ 42.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了