Actions of Relatively Hyperbolic Groups on Cube Complexes

立方复形上相对双曲群的作用

基本信息

  • 批准号:
    1904913
  • 负责人:
  • 金额:
    $ 42.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

In mathematics, a "group" is an algebraic object which encodes the symmetries of an object. As such, group theory provides an algebraic language and a set of techniques for studying problems throughout mathematics. In recent years, some of the most important problems in 3-dimensional geometry (such as the Virtual Haken Conjecture) have been solved by Agol, using results from geometric group theory, and particularly the work of Wise, as well as that of Kahn, Markovic, Haglund, Hsu, Bergeron, Manning and the principal investigator. A key organizational principle is to understand spaces by cutting them along subspaces of one lower dimension. For example, one understands 3-dimensional spaces by cutting along surfaces (two dimensional spaces). This is the context of "Haken" 3-manifolds and of the Virtual Haken Conjecture. It turns out that the way to arrange the cutting subspaces of one lower dimension is via spaces made out of cubes. The major focus of this project is to understand the symmetry groups of these cube complexes, to build new tools to study them and to apply these new tools to many problems in geometry and group theory. The award provides support of training graduate students through research.In the first two parts of the project, we study relatively hyperbolic groups acting cocompactly on CAT(0) cube complexes. In the case the action is proper, Manning and the principal investigator intend to prove a version of Agol's Theorem, that all such groups are virtually special. Along with Einstein, the principal investigator will develop the theory of "relatively proper" actions of relatively hyperbolic groups on CAT(0) cube complexes, a context much more broadly applicable than the setting of proper and cocompact actions. We intend to prove versions of Agol's Theorem, and of Wise's Quasi-convex Hierarchy Theorem in this setting, and also to show that the proper and cocompact theory is a subset of the relatively proper theory. In the final part of this work, we will pursue applications of this theory to questions about hyperbolic and relatively hyperbolic groups with planar boundary.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数学中,“群”是对对象的对称性进行编码的代数对象。因此,群论提供了一种代数语言和一套在整个数学中研究问题的技术。近年来,Agol利用几何群论的结果,特别是Wise,以及Kahn,Markovic,Haglund,Hsu,Bergeron,Manning和主要研究人员的工作,解决了三维几何中的一些最重要的问题(如虚哈肯猜想)。一个关键的组织原则是通过沿着一个较低维度的子空间切割空间来理解空间。例如,一个人通过沿着表面切割来理解三维空间(二维空间)。这是“Haken”3-流形和虚拟Haken猜想的背景。事实证明,安排一个较低维度的切割子空间的方法是通过由立方体组成的空间。这个项目的主要焦点是了解这些立方体复形的对称群,建立新的工具来研究它们,并将这些新工具应用于几何和群论中的许多问题。该奖项为通过研究培养研究生提供了支持。在项目的前两部分,我们研究了作用在CAT(0)立方体复形上的相对双曲群。在行动是适当的情况下,曼宁和首席研究员打算证明阿戈尔定理的一个版本,即所有这些群体实际上都是特殊的。与爱因斯坦一起,首席研究员将发展相对双曲群在CAT(0)立方体复数上的“相对适当”作用的理论,这一背景比适当和余紧作用的设定更适用。在这一背景下,我们将证明Agol定理和Wise拟凸层次定理的不同版本,并证明真紧理论是相对真理论的一个子集。在这项工作的最后部分,我们将继续将这一理论应用于双曲以及具有平面边界的相对双曲群的问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasiconvexity and Dehn filling
拟凸性和 Dehn 填充
  • DOI:
    10.1353/ajm.2021.0007
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Groves, Daniel;Manning, Jason Fox
  • 通讯作者:
    Manning, Jason Fox
Relative cubulations and groups with a 2-sphere boundary
具有 2 球体边界的相对立方体和组
  • DOI:
    10.1112/s0010437x20007095
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Einstein, Eduard;Groves, Daniel
  • 通讯作者:
    Groves, Daniel
Specializing cubulated relatively hyperbolic groups
专门化相对双曲群
  • DOI:
    10.1112/topo.12226
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Groves, Daniel;Manning, Jason Fox
  • 通讯作者:
    Manning, Jason Fox
PRESCRIBED VIRTUAL HOMOLOGICAL TORSION OF 3-MANIFOLDS
3-流形的指定虚拟同调扭转
Relatively geometric actions on CAT$\operatorname{CAT}$(0) cube complexes
CAT$operatorname{CAT}$(0) 立方体复合体上的相对几何操作
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Groves其他文献

CI-545-04 SINGLE CENTER OUTCOMES OF LEAD EXTRACTION IN PATIENTS WITH SEVERE TRICUSPID REGURGITATION
  • DOI:
    10.1016/j.hrthm.2022.03.676
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Syed Rafay Ali Sabzwari;James Arthur Mann;Lukasz Cerbin;Christopher Barrett;Amneet Sandhu;Paul D. Varosy;Jason West;Lohit Garg;Alexis Z. Tumolo;Michael A. Rosenberg;Wendy S. Tzou;Daniel Groves;Muhammad Aftab;Ryan G. Aleong;Matthew M. Zipse
  • 通讯作者:
    Matthew M. Zipse
PO-05-126 strongA SHOCKING TURN OF EVENTS: PRIMARY CARDIAC LYMPHOMA AS A RARE CAUSE FOR SUDDEN CARDIAC DEATH/strong
PO-05-126 惊人的事件转折:原发性心脏淋巴瘤作为突发心脏死亡的罕见原因
  • DOI:
    10.1016/j.hrthm.2023.03.1433
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Maeveen Riordan;Justin Edward;Shaun Webb;Lohit Garg;Daniel Groves;Syed Rafay Ali Sabzwari;Muhammad Aftab;Alexis Z. Tumolo
  • 通讯作者:
    Alexis Z. Tumolo
PROGNOSIS AND RADIATION DOSE OF ULTRA-LOW DOSE (ULD) STRESS-ONLY MYOCARDIAL PERFUSION SPECT IN PATIENTS WITH CHEST PAIN USING A HIGH-EFFICIENCY CAMERA
  • DOI:
    10.1016/s0735-1097(15)61248-7
  • 发表时间:
    2015-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Jeffrey Einstein;Lynne Johnson;Albert DeLuca;Andrew Kontak;Daniel Groves;Jennifer Stant;Ted Pozniakoff;Bin Cheng;Leroy Rabbani;Sabahat Bokhari
  • 通讯作者:
    Sabahat Bokhari
CHAGAS CARDIOMYOPATHY PRESENTING AS VENTRICULAR TACHYCARDIA
  • DOI:
    10.1016/s0735-1097(21)03425-2
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Jessica Parr;Christine Sailer;Daniel Groves;Amber Khanna;Alexis Tumolo
  • 通讯作者:
    Alexis Tumolo
REVERSIBLE SEVERE RIGHT HEART FAILURE AND TRICUSPID REGURGITATION FROM THYROTOXICOSIS
  • DOI:
    10.1016/s0735-1097(17)35564-x
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Tushar Acharya;Andrew Arai;Christine Mancini;Daniel J. Schwartz;Daniel Groves;W. Patricia Bandettini;Sujata Shanbhag
  • 通讯作者:
    Sujata Shanbhag

Daniel Groves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Groves', 18)}}的其他基金

Boundaries of Groups
群体的界限
  • 批准号:
    2203343
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Actions on cube complexes and homomorphisms to families of groups
对立方体复合体和群族同态的作用
  • 批准号:
    1507067
  • 财政年份:
    2015
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
CAREER: Surface bundles and logic in geometric group theory
职业:几何群论中的面丛和逻辑
  • 批准号:
    0953794
  • 财政年份:
    2010
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Continuing Grant
Homomorphisms to hyperbolic and mapping class groups
双曲同态和映射类群
  • 批准号:
    0804365
  • 财政年份:
    2008
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0813863
  • 财政年份:
    2007
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0504251
  • 财政年份:
    2005
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant

相似海外基金

Beautiful and Relatively Wild: Applied Environmental Histories of Britain's National Parks
美丽而相对野生:英国国家公园的应用环境历史
  • 批准号:
    AH/X00449X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Fellowship
Construction of relatively cuspidal representations attached to symmetric varieties over local fields
局部场上对称品种的相对尖峰表示的构建
  • 批准号:
    20K03559
  • 财政年份:
    2020
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
  • 批准号:
    540389-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 42.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Capability of relatively mature osteoblasts to shift bone forming osteoblasts
相对成熟的成骨细胞转移成骨成骨细胞的能力
  • 批准号:
    18K17258
  • 财政年份:
    2018
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Naive heights and relatively square free discriminants
朴素高度和相对平方的自由判别式
  • 批准号:
    490426-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Naive heights and relatively square free discriminants
朴素高度和相对平方的自由判别式
  • 批准号:
    490426-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Three-dimensional biohybrid fabrication with microgels by relatively diamagnetic assembly
通过相对抗磁性组装的微凝胶三维生物杂化制造
  • 批准号:
    17H03202
  • 财政年份:
    2017
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
  • 批准号:
    1709964
  • 财政年份:
    2017
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Continuing Grant
Relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示
  • 批准号:
    497710-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 42.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Naive heights and relatively square free discriminants
朴素高度和相对平方的自由判别式
  • 批准号:
    490426-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了