CAREER: Surface bundles and logic in geometric group theory
职业:几何群论中的面丛和逻辑
基本信息
- 批准号:0953794
- 负责人:
- 金额:$ 40.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project revolves around finding solutions to equations over discrete groups. This is equivalent to understanding sets of homomorphisms between a pair of discrete groups (the domain representing the equations and the target the group of interest). The first half of this project is motivated by the theory of S-bundles, where S is a compact orientable surface. Surface bundles arise throughout pure mathematics. If B is a manifold (or other reasonable space), then there is a one-to-one correspondence between the set of isomorphism classes (oriented) of S-bundles over B and the set of (conjugacy classes of) homomorphisms from the fundamental group of B to the mapping class group of S. The PI intends to develop a general structure theory for this set when the fundamental group of B is finitely generated (which will always happen when B is compact, for example). In the second half of this project (joint work with H, Wilton), we study homomorphisms to free (and more generally torsion-free hyperbolic) groups. Broadly speaking, this is the class of `negatively-curved' groups. This study is motivated by the first-order logic of these groups. It is quite remarkable that the geometry of negative curvature has profound implications for first-order logic. We intend to study these first-order theories from an algorithmic point of view, and find general decision processes which determine if a logical sentence is true or false. Groups form a natural language for studying symmetries of mathematical objects. As such, they arise throughout mathematics, and their study is informed by many branches of mathematics. There are very few basic properties of a `symmetry', the most important of which is that it doesn't lose any information about the space, so it can be undone. In this project, we treat the groups as objects of intrinsic interest, although the questions that we ask take their motivation from topology, geometry, logic and computer science as well as from within group theory. Broadly speaking, we take a collection of equations over a group G, and try to understand the set of all solutions to these equations. In the first half of the project, the group G is the mapping class group of a surface, which captures much of the symmetry of a surface (a space which looks like the plane in small sets). Studying equations over the mapping class group is of fundamental interest in geometry and topology, through the study of surface bundles (a space which nearby any point decomposes into a pair of smaller sets, one of which is a surface). The study of equations over the mapping class group gives a general theory parametrizing surface bundles. The second half of this project studies equations over groups from the point of view of logic, and looks for general algorithms which decide if logical sentences are true of false. This project is jointly funded by the Topology Program and the Foundations Program.
这个项目围绕着寻找离散群上的方程的解。这相当于理解一对离散组(表示方程的域和目标感兴趣的组)之间的同态集合。这个项目的前半部分是由S丛的理论所推动的,其中S是一个紧的可定向曲面。曲面丛在整个纯数学中产生。如果B是流形(或其他合理空间),则B上的S丛的同构类(定向)集与从B的基本群到S的映射类群的同态集(共轭类)之间存在一一对应。PI的目的是当B的基本群是有限生成的(例如,当B是紧的)时,建立该集合的一般结构理论。在这个项目的后半部分(与H,Wilton联合工作),我们研究到自由(更广泛地说是无挠双曲)群的同态。广义地讲,这是一类“负弯曲”的群体。这项研究的动机是这些群体的一阶逻辑。值得注意的是,负曲率几何对一阶逻辑有着深刻的影响。我们打算从算法的角度来研究这些一阶理论,并找到决定逻辑句子真假的一般决策过程。群体形成了研究数学对象对称性的自然语言。因此,它们出现在整个数学中,而且它们的研究受到数学的许多分支的影响。对称的基本性质很少,其中最重要的是它不会丢失关于空间的任何信息,所以它是可以撤销的。在这个项目中,我们将群视为内在感兴趣的对象,尽管我们提出的问题的动机来自拓扑学、几何学、逻辑学和计算机科学以及群论。广义地说,我们取群G上的一组方程,并试图理解这些方程的所有解的集合。在项目的前半部分,群G是曲面的映射类群,它捕捉了曲面(看起来像小集合中的平面的空间)的大部分对称性。通过研究曲面丛(任何点附近的空间分解成一对更小的集合,其中之一是曲面),研究映射类群上的方程是几何学和拓扑学中的基本兴趣。通过对映射类群上方程的研究,给出了曲面丛参数化的一般理论。这个项目的后半部分从逻辑的角度研究群上的方程,并寻找判断逻辑语句是否为真或假的通用算法。该项目由拓扑学计划和基金会计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Groves其他文献
CI-545-04 SINGLE CENTER OUTCOMES OF LEAD EXTRACTION IN PATIENTS WITH SEVERE TRICUSPID REGURGITATION
- DOI:
10.1016/j.hrthm.2022.03.676 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Syed Rafay Ali Sabzwari;James Arthur Mann;Lukasz Cerbin;Christopher Barrett;Amneet Sandhu;Paul D. Varosy;Jason West;Lohit Garg;Alexis Z. Tumolo;Michael A. Rosenberg;Wendy S. Tzou;Daniel Groves;Muhammad Aftab;Ryan G. Aleong;Matthew M. Zipse - 通讯作者:
Matthew M. Zipse
PO-05-126 strongA SHOCKING TURN OF EVENTS: PRIMARY CARDIAC LYMPHOMA AS A RARE CAUSE FOR SUDDEN CARDIAC DEATH/strong
PO-05-126 惊人的事件转折:原发性心脏淋巴瘤作为突发心脏死亡的罕见原因
- DOI:
10.1016/j.hrthm.2023.03.1433 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Maeveen Riordan;Justin Edward;Shaun Webb;Lohit Garg;Daniel Groves;Syed Rafay Ali Sabzwari;Muhammad Aftab;Alexis Z. Tumolo - 通讯作者:
Alexis Z. Tumolo
PROGNOSIS AND RADIATION DOSE OF ULTRA-LOW DOSE (ULD) STRESS-ONLY MYOCARDIAL PERFUSION SPECT IN PATIENTS WITH CHEST PAIN USING A HIGH-EFFICIENCY CAMERA
- DOI:
10.1016/s0735-1097(15)61248-7 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Andrew Jeffrey Einstein;Lynne Johnson;Albert DeLuca;Andrew Kontak;Daniel Groves;Jennifer Stant;Ted Pozniakoff;Bin Cheng;Leroy Rabbani;Sabahat Bokhari - 通讯作者:
Sabahat Bokhari
CHAGAS CARDIOMYOPATHY PRESENTING AS VENTRICULAR TACHYCARDIA
- DOI:
10.1016/s0735-1097(21)03425-2 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:
- 作者:
Jessica Parr;Christine Sailer;Daniel Groves;Amber Khanna;Alexis Tumolo - 通讯作者:
Alexis Tumolo
REVERSIBLE SEVERE RIGHT HEART FAILURE AND TRICUSPID REGURGITATION FROM THYROTOXICOSIS
- DOI:
10.1016/s0735-1097(17)35564-x - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Tushar Acharya;Andrew Arai;Christine Mancini;Daniel J. Schwartz;Daniel Groves;W. Patricia Bandettini;Sujata Shanbhag - 通讯作者:
Sujata Shanbhag
Daniel Groves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Groves', 18)}}的其他基金
Actions of Relatively Hyperbolic Groups on Cube Complexes
立方复形上相对双曲群的作用
- 批准号:
1904913 - 财政年份:2019
- 资助金额:
$ 40.33万 - 项目类别:
Continuing Grant
Actions on cube complexes and homomorphisms to families of groups
对立方体复合体和群族同态的作用
- 批准号:
1507067 - 财政年份:2015
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
Homomorphisms to hyperbolic and mapping class groups
双曲同态和映射类群
- 批准号:
0804365 - 财政年份:2008
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
相似国自然基金
“surface-17”量子纠错码在超导量子电路中的实现
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于surface hopping方法探索有机半导体中激子解体机制
- 批准号:LY19A040007
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于强自旋轨道耦合纳米线自旋量子比特的Surface code量子计算实验研究
- 批准号:11574379
- 批准年份:2015
- 资助金额:73.0 万元
- 项目类别:面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
- 批准号:11426209
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Nano/Micro-surface pattern的摩擦特性研究
- 批准号:50765008
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
- 批准号:
NE/W00089X/2 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Research Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
- 批准号:
2337069 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
- 批准号:
2339911 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
Role of CD206 surface antigen on M2 macrophages in the development of insulin resistance in the diet-induced obese mice model
M2巨噬细胞上CD206表面抗原在饮食诱导肥胖小鼠模型胰岛素抵抗发展中的作用
- 批准号:
24K19282 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: IMPRESS-U: Gradient surface nanostructuring with short laser pulses
EAGER:IMPRESS-U:使用短激光脉冲进行梯度表面纳米结构
- 批准号:
2406599 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Standard Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 40.33万 - 项目类别:
Continuing Grant














{{item.name}}会员




