Boundaries of Groups

群体的界限

基本信息

  • 批准号:
    2203343
  • 负责人:
  • 金额:
    $ 37.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

A central theme in mathematics for centuries has been the interaction between algebra and geometry. The usual direction is to study the set of symmetries of a geometric object of interest. In geometric group theory, this becomes a two-way street in that algebraic objects (such as groups) are considered as geometric objects in their own right. Hyperbolic geometry is a subject going back to work of Bolyai, Gauss and others in the 19th Century, but it also plays a central role in modern geometry, due to the influence of Thurston and Gromov. This project centers around a central question in geometric group theory, the Cannon Conjecture, about the difference (in three dimensions) between classical hyperbolic geometry and the coarse notion due to Gromov, in the presence of a large group of symmetries. Broader impacts of this project include research training opportunities for graduate students.Over the last decade the principal investigator, along with Manning and others, has developed many tools involving relatively hyperbolic Dehn filling, which gives strong control on certain kinds of quotients of relatively hyperbolic groups. This project leverages this work to study hyperbolic and relatively hyperbolic groups whose boundary at infinity is a two-sphere. The Cannon Conjecture predicts that such groups are virtually Kleinian groups. This project proposes various approaches to this and related conjectures. With Haissinsky, Manning, Osajda, Sisto and Walsh, the PI continues to develop a theory of drilling hyperbolic groups with two-sphere boundary. The PI will investigate possible quasi-isometries between hyperbolic and relatively hyperbolic groups with 2-sphere boundaries. With Wilton, the PI will develop a notion of coarse sectional curvature, with applications to coherence and local quasi-convexity of certain hyperbolic groups. In a different but related direction, with Einstein the PI will continue to study relatively geometric actions of relatively hyperbolic groups on CAT(0) cube complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几个世纪以来,数学的一个中心主题一直是代数和几何之间的相互作用。 通常的方向是研究感兴趣的几何对象的对称性。 在几何群论中,这成为一条双向的道路,因为代数对象(如群)被认为是几何对象。双曲几何是一个主题回到工作的波尔约,高斯和其他人在世纪,但它也发挥了核心作用,在现代几何,由于影响瑟斯顿和格罗莫夫。 这个项目围绕着几何群论中的一个中心问题,坎农猜想,关于经典双曲几何和格罗莫夫的粗糙概念之间的差异(在三维空间中),在存在一大群对称性的情况下。更广泛的影响,这一项目包括研究培训的机会,为研究生。在过去的十年中,首席研究员,沿着与曼宁和其他人,已经开发了许多工具,涉及相对双曲德恩填充,这给了强有力的控制某些种类的相对双曲群的导数。 这个项目利用这项工作来研究双曲和相对双曲群,其边界在无穷远处是一个双球面。 坎农猜想预言这样的群实际上是克莱因群。 该项目提出了各种方法,这和相关的架构。 与海辛斯基,曼宁,Osajda,西斯托和沃尔什,PI继续发展理论的钻探双曲群与两个球边界。 PI将研究双曲群和相对双曲群之间可能的准等距性。 与威尔顿,PI将开发一个概念的粗截面曲率,与应用程序的连贯性和局部准凸的某些双曲群。 在另一个不同但相关的方向上,PI将与爱因斯坦一起继续研究CAT(0)立方体复合体上相对双曲群的相对几何作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Groves其他文献

CI-545-04 SINGLE CENTER OUTCOMES OF LEAD EXTRACTION IN PATIENTS WITH SEVERE TRICUSPID REGURGITATION
  • DOI:
    10.1016/j.hrthm.2022.03.676
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Syed Rafay Ali Sabzwari;James Arthur Mann;Lukasz Cerbin;Christopher Barrett;Amneet Sandhu;Paul D. Varosy;Jason West;Lohit Garg;Alexis Z. Tumolo;Michael A. Rosenberg;Wendy S. Tzou;Daniel Groves;Muhammad Aftab;Ryan G. Aleong;Matthew M. Zipse
  • 通讯作者:
    Matthew M. Zipse
PO-05-126 strongA SHOCKING TURN OF EVENTS: PRIMARY CARDIAC LYMPHOMA AS A RARE CAUSE FOR SUDDEN CARDIAC DEATH/strong
PO-05-126 惊人的事件转折:原发性心脏淋巴瘤作为突发心脏死亡的罕见原因
  • DOI:
    10.1016/j.hrthm.2023.03.1433
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Maeveen Riordan;Justin Edward;Shaun Webb;Lohit Garg;Daniel Groves;Syed Rafay Ali Sabzwari;Muhammad Aftab;Alexis Z. Tumolo
  • 通讯作者:
    Alexis Z. Tumolo
PROGNOSIS AND RADIATION DOSE OF ULTRA-LOW DOSE (ULD) STRESS-ONLY MYOCARDIAL PERFUSION SPECT IN PATIENTS WITH CHEST PAIN USING A HIGH-EFFICIENCY CAMERA
  • DOI:
    10.1016/s0735-1097(15)61248-7
  • 发表时间:
    2015-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Jeffrey Einstein;Lynne Johnson;Albert DeLuca;Andrew Kontak;Daniel Groves;Jennifer Stant;Ted Pozniakoff;Bin Cheng;Leroy Rabbani;Sabahat Bokhari
  • 通讯作者:
    Sabahat Bokhari
CHAGAS CARDIOMYOPATHY PRESENTING AS VENTRICULAR TACHYCARDIA
  • DOI:
    10.1016/s0735-1097(21)03425-2
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Jessica Parr;Christine Sailer;Daniel Groves;Amber Khanna;Alexis Tumolo
  • 通讯作者:
    Alexis Tumolo
REVERSIBLE SEVERE RIGHT HEART FAILURE AND TRICUSPID REGURGITATION FROM THYROTOXICOSIS
  • DOI:
    10.1016/s0735-1097(17)35564-x
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Tushar Acharya;Andrew Arai;Christine Mancini;Daniel J. Schwartz;Daniel Groves;W. Patricia Bandettini;Sujata Shanbhag
  • 通讯作者:
    Sujata Shanbhag

Daniel Groves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Groves', 18)}}的其他基金

Actions of Relatively Hyperbolic Groups on Cube Complexes
立方复形上相对双曲群的作用
  • 批准号:
    1904913
  • 财政年份:
    2019
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Continuing Grant
Actions on cube complexes and homomorphisms to families of groups
对立方体复合体和群族同态的作用
  • 批准号:
    1507067
  • 财政年份:
    2015
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Standard Grant
CAREER: Surface bundles and logic in geometric group theory
职业:几何群论中的面丛和逻辑
  • 批准号:
    0953794
  • 财政年份:
    2010
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Continuing Grant
Homomorphisms to hyperbolic and mapping class groups
双曲同态和映射类群
  • 批准号:
    0804365
  • 财政年份:
    2008
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0813863
  • 财政年份:
    2007
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Standard Grant
Research in Geometric Group Theory
几何群论研究
  • 批准号:
    0504251
  • 财政年份:
    2005
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Standard Grant

相似海外基金

Poisson Boundaries of Hyperbolic Groups
双曲群的泊松边界
  • 批准号:
    577681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Expanding the boundaries of the Elliott classification program: Quantum groups and Quaternions
扩展艾略特分类程序的边界:量子群和四元数
  • 批准号:
    RGPIN-2016-05768
  • 财政年份:
    2020
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding the boundaries of the Elliott classification program: Quantum groups and Quaternions
扩展艾略特分类程序的边界:量子群和四元数
  • 批准号:
    RGPIN-2016-05768
  • 财政年份:
    2019
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding the boundaries of the Elliott classification program: Quantum groups and Quaternions
扩展艾略特分类程序的边界:量子群和四元数
  • 批准号:
    RGPIN-2016-05768
  • 财政年份:
    2018
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Discovery Grants Program - Individual
Expanding the boundaries of the Elliott classification program: Quantum groups and Quaternions
扩展艾略特分类程序的边界:量子群和四元数
  • 批准号:
    RGPIN-2016-05768
  • 财政年份:
    2017
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Discovery Grants Program - Individual
Boundaries of Groups
群体的界限
  • 批准号:
    511978-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 37.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Conference: No Boundaries: Groups in Algebra, Geometry, and Topology
会议:无边界:代数、几何和拓扑中的群
  • 批准号:
    1748107
  • 财政年份:
    2017
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Standard Grant
Boundaries of Hyperbolic and Relatively Hyperbolic Groups
双曲群和相对双曲群的边界
  • 批准号:
    1709964
  • 财政年份:
    2017
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Continuing Grant
Boundaries of acylindrically hyperbolic groups and applications
圆柱双曲群的边界及其应用
  • 批准号:
    338192326
  • 财政年份:
    2017
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Priority Programmes
Automorphism Groups and Morse Boundaries
自同构群和莫尔斯边界
  • 批准号:
    1607616
  • 财政年份:
    2016
  • 资助金额:
    $ 37.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了