Networked Battery System Management and Control for Active Diagnosis, Observability and Resilient Operation
网络化电池系统管理和控制,实现主动诊断、可观察性和弹性运行
基本信息
- 批准号:1507096
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Batteries are one of the most critical enabling technologies for achieving clean, efficient and sustainable energy development in the transportation and power sectors. Advanced vehicle and power grid battery systems consist of networked battery modules of diverse types and characteristics. System-level performance can be interrupted or completely disabled by subsystem abnormality. Beyond typical battery management systems (BMS) for individual battery modules, this project will develop a novel resilient battery management system (RBMS) for reliable operations of networked battery systems. This RBMS will be capable of detecting and locating abnormality, prevent them from propagating, and of reconfiguring the battery system for sustained operation. This critical and transformative technology will support electric vehicles for extended battery life, sustain military missions under limited energy resources, and maintain smart electricity grids without interruption. Beyond its direct technological advance in battery characterization, control and management, this project will have significant educational, societal, and economic impact. It will also help advance technology and workforce development in these energy storage and the many associated fields of application. Within this project, the team will integrate findings into battery technology curricula in the existing Electrical-Drive Vehicle Engineering programs at the undergraduate and graduate levels at Wayne State University. Courses and training seminars on advanced battery management systems will be developed for students, engineers, and technicians to enhance workforce training in vehicle electrification, sustainable energy development, and smart grids. The success of this project will help achieve cleaner, more efficient, and more reliable transportation, power grids, and beyond.Battery abnormality conditions include potential health deterioration indicated by drifting of characterizing variables into unacceptable regions, faults that must be cleared by timely remedy actions, and failures that are not recoverable. Networked battery systems introduce unique and daunting challenges, including sensing limitations for prompt fault diagnosis and localization, fast and accurate joint estimation of state of charge and characterizing parameters, and advanced power electronics for system reconfiguration. Current battery systems and their management do not include such functions. Employing methodologies from discrete event systems, system identification and state estimation, stochastic analysis, and advanced power electronics control, this project will introduce a new RBMS framework for integrated control, active diagnosis, and sustained operation of networked battery systems. Collaborating with industry leaders in battery technology, electric vehicles, and smart grids, the team will develop a new theory of active network observers, real-time active diagnosis and localization of abnormal conditions, reconfiguration, and adaptive BMS strategies. The proposed methods represent a transformative technology for managing different types of batteries and structures, including new or old batteries, for vehicle and grid applications. The main approaches of this project have some distinctive and novel features: (1) Discrete event system (DES)-based diagnosis strategies and control decisions. By using systematic DES strategies, fast diagnosis and localization of abnormal conditions can be achieved; (2) Real-time battery characterization for module-level diagnosis. A battery's states and parameters will be jointly estimated for characterizing batteries in real time; and (3) Active system reconfiguration to accommodate resilient operation and adaptive battery management systems. Hardware reconfiguration will prevent local abnormality from spreading to other parts of battery systems. The battery management systems then self-adjust to sustain operation under the new configuration.
电池是交通和电力部门实现清洁、高效和可持续能源发展的最关键的赋能技术之一。先进的车辆和电网电池系统由不同类型和特性的联网电池模块组成。子系统异常可能会中断或完全禁用系统级性能。除了用于单个电池模块的典型电池管理系统(BMS)之外,该项目还将开发一种新型的弹性电池管理系统(RBMS),以实现联网电池系统的可靠运行。该RBMS将能够检测和定位异常,防止它们传播,并重新配置电池系统以持续运行。这项关键的变革性技术将支持电动汽车延长电池寿命,在有限的能源资源下维持军事任务,并保持智能电网不间断。除了在电池表征、控制和管理方面的直接技术进步外,该项目还将产生重大的教育、社会和经济影响。它还将有助于推进这些储能和许多相关应用领域的技术和劳动力发展。在该项目中,该团队将把研究结果整合到韦恩州立大学现有的本科和研究生水平的电动汽车工程项目的电池技术课程中。 将为学生、工程师和技术人员开发关于先进电池管理系统的课程和培训研讨会,以加强汽车电气化、可持续能源开发和智能电网方面的劳动力培训。该项目的成功将有助于实现更清洁、更高效和更可靠的交通、电网等。电池异常情况包括特征变量漂移到不可接受区域所指示的潜在健康状况恶化、必须通过及时补救措施清除的故障以及不可恢复的故障。网络化电池系统带来了独特而艰巨的挑战,包括快速故障诊断和定位的传感限制,快速准确的充电状态和特征参数联合估计,以及用于系统重新配置的先进电力电子技术。当前的电池系统及其管理不包括这样的功能。采用离散事件系统,系统识别和状态估计,随机分析和先进的电力电子控制的方法,该项目将引入一个新的RBMS框架的集成控制,主动诊断,并持续运行的网络电池系统。该团队将与电池技术、电动汽车和智能电网领域的行业领导者合作,开发一种新的主动网络观测器理论,实时主动诊断和异常状况定位,重新配置和自适应BMS策略。所提出的方法代表了一种变革性技术,用于管理车辆和电网应用中不同类型的电池和结构,包括新电池或旧电池。本课题的主要研究方法具有以下特点:(1)基于离散事件系统(DES)的诊断策略和控制决策。通过系统的DES策略,可以实现对异常情况的快速诊断和定位;(2)用于模块级诊断的实时电池表征。电池的状态和参数将被联合估计以用于真实的时间中表征电池;以及(3)主动系统重新配置以适应弹性操作和自适应电池管理系统。硬件重新配置将防止局部异常扩散到电池系统的其他部分。然后,电池管理系统进行自我调整,以维持在新配置下的操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Yi Wang其他文献
Decision-based system identification and adaptiveresource allocation
基于决策的系统识别和自适应资源分配
- DOI:
10.1109/tac.2016.2612483 - 发表时间:
- 期刊:
- 影响因子:6.8
- 作者:
郭金;Biqiang Mu;Le Yi Wang;George Yin;Lijian Xu - 通讯作者:
Lijian Xu
Closed-Loop Persistent Identification of Linear Time-Varying Systems
- DOI:
10.1016/s1474-6670(17)42836-9 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:
- 作者:
Le Yi Wang;Jie Chen - 通讯作者:
Jie Chen
Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs
利用量化观测值和一般量化输入渐近有效识别 FIR 系统
- DOI:
10.1016/j.automatica.2015.04.009 - 发表时间:
2015 - 期刊:
- 影响因子:6.4
- 作者:
Jin Guo;Le Yi Wang;George Yin;Yanlong Zhao;Ji-Feng Zhang - 通讯作者:
Ji-Feng Zhang
Asymptotically efficient parameter estimation using quantized output observations
- DOI:
10.1016/j.automatica.2006.12.030 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:
- 作者:
Le Yi Wang;G. George Yin - 通讯作者:
G. George Yin
The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment
- DOI:
10.1007/s11064-024-04194-w - 发表时间:
2024-06-12 - 期刊:
- 影响因子:3.800
- 作者:
Le Yi Wang;Lei Zhang;Xin Yue Bai;Rong Rong Qiang;Ning Zhang;Qian Qian Hu;Jun Zhi Cheng;Yan Ling Yang;Yang Xiang - 通讯作者:
Yang Xiang
Le Yi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Yi Wang', 18)}}的其他基金
Sensors: Multi-Sensor Information Processing with Automotive Applications
传感器:汽车应用中的多传感器信息处理
- 批准号:
0329597 - 财政年份:2003
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
GOALI: Optimal Hybrid Control and Coordination of Engine and Transmission Systems
目标:发动机和传动系统的最佳混合控制和协调
- 批准号:
9634375 - 财政年份:1996
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Engineering Faculty Intrnship: Automotive Powertrain Control
工程学院实习:汽车动力总成控制
- 批准号:
9412471 - 财政年份:1994
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
H-infinity Design in Interconnected and Slowly Time-varying Systems
互连且慢时变系统中的 H 无穷大设计
- 批准号:
9209001 - 财政年份:1992
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
相似海外基金
Battery-less Sensing Networks for Food Quality Control with Power Efficient Wireless Power Transfer System and Communication Capabilities
用于食品质量控制的无电池传感网络,具有高能效无线电力传输系统和通信功能
- 批准号:
2315370 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Demonstrator for scalable 1MW+ Zero Emission battery-hydrogen hybrid propulsion system
可扩展 1MW 零排放电池-氢混合推进系统演示器
- 批准号:
10039423 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative R&D
Universal Battery Recycling System (UBRS)
通用电池回收系统(UBRS)
- 批准号:
10062327 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative R&D
CURB - Compact Urban Battery Storage System for residential apartments to support demand side response and reduce energy bills by 50%
CURB%20-%20Compact%20Urban%20Battery%20Storage%20System%20for%20residential%20apartments%20to%20support%20demand%20side%20response%20and%20reduce%20energy%20bills%20by%2050%
- 批准号:
10089154 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative R&D
NEXT GENERATION BATTERY MANAGEMENT SYSTEM BASED ON DATA RICH DIGITAL TWIN
基于数据丰富的数字孪生的下一代电池管理系统
- 批准号:
10069742 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
EU-Funded
ENERGETIC: Next Generation Battery Management System Based on Data Rich Digital Twin
ENERGETIC:基于数据丰富的数字孪生的下一代电池管理系统
- 批准号:
10080396 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
EU-Funded
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
- 批准号:
2222450 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Southern Railway of BC (SRY) Green Goat switcher locomotive retrofit into a zero-emission vehicle (ZEV) via low pressure hydrogen, fuel cell / battery hybrid (hydrail) system
不列颠哥伦比亚省南部铁路 (SRY) Green Goat 切换机车通过低压氢气、燃料电池/蓄电池混合动力(Hydrail)系统改造为零排放车辆(ZEV)
- 批准号:
561186-2020 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Alliance Grants
Battery Management System and Active Thermal Control of Aircraft Batteries for Aerospace Applications in Cold Temperature
低温下航空航天应用的电池管理系统和飞机电池主动热控制
- 批准号:
560762-2020 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Alliance Grants
I-Corps: A Life-Prolonging Management System for Lithium-Sulfur Battery Packs
I-Corps:锂硫电池组的延长寿命管理系统
- 批准号:
2219940 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant