Sensors: Multi-Sensor Information Processing with Automotive Applications

传感器:汽车应用中的多传感器信息处理

基本信息

  • 批准号:
    0329597
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-15 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

Technology advancement in automotive engine, transmission, and emission aftertreatment systems hasushered in new challenges in developing sophisticated information processing and control strategies tooptimize vehicle performance at reduced costs. Sensor information processing is of vital importance inthis pursuit. Optimal utility of low-cost sensors, information coordination of multiple sensors, andestimation of internal states and system parameters using sensors of limited capability and accuracy havebecome one of the key design considerations.Using automotive systems as a key platform, and gasoline direct injection engine and its aftertreatmentsystem for methodology development and implementation, this project will investigate the followingfundamental issues on sensor information processing: (1) How can one identify system parameters orestimate internal states by using low-cost sensors that provide only limited information and accuracy? (2)How can one maximize the information utility of multiple sensor systems? (3) What is the impact ofsensor location configuration and characteristics on performance benefits and costs? Due to highnonlinearity, large uncertainty, and sensor limitations, these issues are extremely challenging, anddemand new methodologies and implementation technologies that will push forward the frontiers ofsystem identification and practical sensor information processing.Intellectual Merit of the Project: With over 220 million registered vehicles and 2.8 trillion miles ofannually traveled distances, the US automotive industry bears an enormous impact on the national andglobal economy, safety, and environment. This project will develop an innovative methodology of multi-sensoridentification and estimation, on the basis of extensive past research effort from the PI and hiscollaborators. In collaboration with researchers from the automotive industry, findings from thisinvestigation will be employed and implemented to design better control and adaptation strategies inautomotive systems for improved performance.Successful completion of this project will also introduce new identification and sensor informationmethods that go much beyond what is known in these fields. In particular, it will lead to new multi-sensoridentification methods that use binary-valued and other nonlinear sensors, and new understanding ofimplementation issues on practical sensor information processing. In light of tremendous sensordevelopment effort in many application areas, such as gas content sensors, biosensors, wireless medicalsensors, nanosensors, etc., which will all demand advanced and new information processing techniques tomaximize their capabilities and utilities, this project anticipates such emerging requirements for sensorinformation processing methodologies, and develops generic methods that will see increased utility whennew sensors are developed.Broad Impact: Beyond the automotive powertrain platforms, the findings from this project will havedirect utility in a wide array of applications, including vehicle rollover prediction, fault diagnosis of fuelcell systems and vehicles, computer network traffic control, medical sensor information processing, andprocess control problems. The PI and his industry collaborators are currently pursuing methodologyenhancement, technology transfer, and device development in these areas.This research project encompasses fundamental research and technology development across a widerange of disciplines. It targets directly at a broad and important automotive application; involvesmathematics modeling, sensor signal processing, and system identification; and utilizes the mostadvanced facility at Ford Motor Company. As such it provides participating undergraduate and graduatestudents an excellent opportunity to be exposed to a large spectrum of scientific and technology frontierswith fundamental methodology development, hand-on design skills, and industry experience. Theresearch findings and course material from this project will be widely disseminated in professionalconferences and journals. Software packages resulted from this project will be released through theproject homepage for the public use free of charge.
汽车发动机、变速器和排放后处理系统的技术进步为开发复杂的信息处理和控制策略带来了新的挑战,以降低成本优化车辆性能。在这种追求中,传感器信息处理是至关重要的。低成本传感器的优化利用,多个传感器的信息协调,以及利用能力和精度有限的传感器估计内部状态和系统参数已成为设计的关键考虑因素之一。本项目以汽车系统为关键平台,以汽油直喷式发动机及其后处理系统为方法开发和实施,研究传感器信息处理的以下基本问题:(1)如何使用仅提供有限信息和精度的低成本传感器来识别系统参数或真实的内部状态?(2)如何最大化多个传感器系统的信息效用?(3)传感器的位置配置和特性对性能效益和成本的影响是什么?由于高度的非线性、巨大的不确定性和传感器的局限性,这些问题极具挑战性,需要新的方法和实现技术来推动系统识别和实用传感器信息处理的前沿。该项目的智力价值:美国汽车工业拥有超过2.2亿辆注册车辆和2.8万亿英里的年行驶里程,对国家和全球经济、安全和环境产生巨大影响。这个项目将在PI和他的合作者过去广泛研究工作的基础上,开发一种创新的多传感器识别和估计方法。与汽车行业的研究人员合作,这项调查的结果将被用于汽车系统中设计更好的控制和适应策略,以提高性能。该项目的成功完成还将引入新的识别和传感器信息方法,远远超出这些领域的已知。特别是,它将导致使用二值化和其他非线性传感器的新的多传感器识别方法,以及对实际传感器信息处理的实现问题的新的理解。鉴于传感器在许多应用领域的巨大开发工作,如气体含量传感器、生物传感器、无线医学传感器、纳米传感器等,这些都需要先进和新的信息处理技术来最大化其能力和用途,该项目预见到对传感器信息处理方法的新需求,并开发通用方法,随着新传感器的开发将增加实用性。广泛影响:除了汽车动力总成平台,本项目的发现将在广泛的应用中产生直接作用,包括车辆侧翻预测、燃料电池系统和车辆的故障诊断、计算机网络交通控制、医疗传感器信息处理和过程控制问题。PI和他的行业合作伙伴目前正在这些领域追求方法论的增强、技术转让和设备开发。这一研究项目涵盖了跨多个学科的基础研究和技术开发。它直接针对广泛而重要的汽车应用;涉及数学建模、传感器信号处理和系统识别;并利用福特汽车公司最先进的设施。因此,它为参与的本科生和研究生提供了一个极好的机会,让他们接触到广泛的科学和技术前沿,包括基本的方法开发、动手设计技能和行业经验。该项目的研究结果和课程材料将在专业会议和期刊上广泛传播。本项目产生的软件包将通过项目主页免费发布给公众使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Le Yi Wang其他文献

Decision-based system identification and adaptiveresource allocation
基于决策的系统识别和自适应资源分配
  • DOI:
    10.1109/tac.2016.2612483
  • 发表时间:
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    郭金;Biqiang Mu;Le Yi Wang;George Yin;Lijian Xu
  • 通讯作者:
    Lijian Xu
Closed-Loop Persistent Identification of Linear Time-Varying Systems
  • DOI:
    10.1016/s1474-6670(17)42836-9
  • 发表时间:
    1997-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Le Yi Wang;Jie Chen
  • 通讯作者:
    Jie Chen
Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs
利用量化观测值和一般量化输入渐近有效识别 FIR 系统
  • DOI:
    10.1016/j.automatica.2015.04.009
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Jin Guo;Le Yi Wang;George Yin;Yanlong Zhao;Ji-Feng Zhang
  • 通讯作者:
    Ji-Feng Zhang
Asymptotically efficient parameter estimation using quantized output observations
  • DOI:
    10.1016/j.automatica.2006.12.030
  • 发表时间:
    2007-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Le Yi Wang;G. George Yin
  • 通讯作者:
    G. George Yin
The Role of Ferroptosis in Amyotrophic Lateral Sclerosis Treatment
  • DOI:
    10.1007/s11064-024-04194-w
  • 发表时间:
    2024-06-12
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Le Yi Wang;Lei Zhang;Xin Yue Bai;Rong Rong Qiang;Ning Zhang;Qian Qian Hu;Jun Zhi Cheng;Yan Ling Yang;Yang Xiang
  • 通讯作者:
    Yang Xiang

Le Yi Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Le Yi Wang', 18)}}的其他基金

Networked Battery System Management and Control for Active Diagnosis, Observability and Resilient Operation
网络化电池系统管理和控制,实现主动诊断、可观察性和弹性运行
  • 批准号:
    1507096
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Optimal Hybrid Control and Coordination of Engine and Transmission Systems
目标:发动机和传动系统的最佳混合控制和协调
  • 批准号:
    9634375
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineering Faculty Intrnship: Automotive Powertrain Control
工程学院实习:汽车动力总成控制
  • 批准号:
    9412471
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
H-infinity Design in Interconnected and Slowly Time-varying Systems
互连且慢时变系统中的 H 无穷大设计
  • 批准号:
    9209001
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PhD in Intelligent Multi-function RF Sensor Solutions
智能多功能射频传感器解决方案博士
  • 批准号:
    2883782
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Enhancing ambient capacitive sensing through improved resolution and multi-modal sensor fusion
职业:通过提高分辨率和多模式传感器融合增强环境电容传感
  • 批准号:
    2237945
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RAPID: Evaluation of an Artificial Intelligence-enhanced Edge Sensor System for Multi-Hazard Monitoring and Detection
RAPID:评估用于多危险监测和检测的人工智能增强型边缘传感器系统
  • 批准号:
    2346568
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improving natural capital asset monitoring through 5G enabled multi-sensor integration
通过 5G 支持的多传感器集成改善自然资本资产监控
  • 批准号:
    10055099
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    CR&D Bilateral
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
  • 批准号:
    10765991
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a multi-gas sensor using strain-controlled graphene and its application to health monitoring
应变控制石墨烯多气体传感器的研制及其在健康监测中的应用
  • 批准号:
    23KJ0196
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Machine Learning of Behavioural Models for Improved Multi-Sensor Fusion
用于改进多传感器融合的行为模型的机器学习
  • 批准号:
    2889812
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
  • 批准号:
    10696658
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了