Environment-dependent coarsening of supported metallic nanoclusters
负载金属纳米团簇的环境依赖性粗化
基本信息
- 批准号:1507223
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Environment-dependent coarsening of supported metallic nanoclusters "Nature abhors a vacuum" is an old adage, but its modern-day and equally-valid counterpart could be "Nature abhors a nanoparticle". The forces of nature embodied in thermodynamics dictate that bare nanoparticles are intrinsically unstable; they will inevitably merge (coarsen), becoming larger (and fewer) under normal conditions. Eventually they will lose the properties inherent to smallness. And that can be detrimental, since the properties of nanoparticles are exploited in numerous technologies. Drs. Thiel and Evans are investigating a major, and largely unexplored, aspect of the coarsening process, namely, the nature of the species that shuttle material back and forth between nanoparticles, allowing them to change size. This is a challenging task, but Dr. Thiel is gaining deep and surprising new insights by studying model systems of nanoparticles supported on flat surfaces. Her co-PI, James Evans, models these systems computationally, and helps interpret Dr. Thiel's experimental efforts. Focusing on nanoparticles of Cu, Ag, and Au, which have valuable optical and catalytic properties, Dr. Thiel can directly "see" stoichiometric surface complexes that are involved in coarsening. These complexes can be thought of as mobile molecules containing a few atoms from the nanoparticles and a few atoms from the environment. She has discovered, for example, a heart-shaped "molecule" containing two copper atoms and three sulfur atoms, which can shuttle copper atoms across a surface. The instrumentation and experimental/theoretical approach involved in this research are complex. Because of this, as well as her supportive mentoring, Dr. Thiel's students have a wide reputation as excellent experimentalists and scientists. They are valued, for instance, in the microelectronics industry and other high-tech environments, where they constitute a part of the human technological infrastructure of the nation. Dr. Evan's students are also in high demand for their excellent computational modeling skills.In this research program, Dr. Thiel and Dr. Evans of Iowa State University are supported by the Macromolecular, Supramolecular and Nanochemistry (MSN) Program to study the mechanisms and kinetics of coarsening of metallic nanoclusters on surfaces in the presence of chemical additives. The success of nanoscale science and technology is dependent on robustness of such synthesized functional nanostructures, especially in operating environments. Their analysis exploits a closely integrated combination of experimental studies in a controlled ultra-high vacuum environment and predictive system-specific theory/modeling studies. In-situ Scanning Tunneling Microscopy (STM) studies provide key information on the coarsening mechanism (e.g., Ostwald ripening where small clusters disappear, versus Smoluchowski ripening where cluster diffuse and coalesce) and kinetics. mass transport is mediated by additive-metal complexes, where the interaction of metal additives with the surface has the potential to induce restructuring, and the formation of such complexes is of particular interest in these studies. Theoretical studies utilize Density Functional Theory to assess the metal-metal and metal-additive energetics which control the above described behavior. These energies inform statistical mechanical models describing the surface structures and dynamics observed in the STM studies. This project provides training for junior scientists in a range of sophisticated experimental and versatile modeling techniques which enable chemical materials and nanotechnologies of importance to the US.
环境依赖的负载金属纳米团簇的粗化“自然厌恶真空”是一句古老的格言,但其现代和同样有效的对应物可能是“自然厌恶纳米粒子”。热力学中体现的自然力决定了裸纳米粒子本质上是不稳定的;它们将不可避免地合并(粗糙化),在正常条件下变得更大(和更少)。最终,他们将失去小的固有属性。这可能是有害的,因为纳米颗粒的特性在许多技术中被利用。Thiel博士和Evans博士正在研究粗化过程中一个主要的、基本上未被探索的方面,即在纳米颗粒之间来回穿梭材料的物种的性质,使它们能够改变尺寸。这是一项具有挑战性的任务,但Thiel博士通过研究支撑在平面上的纳米颗粒模型系统,获得了深刻而令人惊讶的新见解。她的合作PI,詹姆斯埃文斯,这些系统的计算模型,并帮助解释泰尔博士的实验努力。 Thiel博士专注于Cu、Ag和Au的纳米颗粒,这些纳米颗粒具有宝贵的光学和催化性能,他可以直接“看到”参与粗化的化学计量表面复合物。这些复合物可以被认为是移动的分子,含有来自纳米颗粒的几个原子和来自环境的几个原子。例如,她发现了一种含有两个铜原子和三个硫原子的心形“分子”,它可以使铜原子在表面穿梭。本研究涉及的仪器和实验/理论方法是复杂的。正因为如此,以及她的支持指导,泰尔博士的学生作为优秀的实验家和科学家有着广泛的声誉。例如,在微电子工业和其他高技术环境中,它们是有价值的,它们构成了国家人力技术基础设施的一部分。 Evan博士的学生也对他们出色的计算建模技能有很高的要求,在这个研究项目中,爱荷华州州立大学的Thiel博士和Evans博士得到了大分子、超分子和纳米化学(MSN)项目的支持,研究在化学添加剂存在下表面金属纳米团簇粗化的机制和动力学。纳米科学和技术的成功取决于这种合成的功能纳米结构的鲁棒性,特别是在操作环境中。他们的分析利用了受控超高真空环境中的实验研究和预测系统特定理论/建模研究的紧密结合。原位扫描隧道显微镜(STM)研究提供了关于粗化机制的关键信息(例如,Ostwald熟化(小团簇消失)与Smoluchowski熟化(团簇扩散和合并)和动力学。质量传递是由添加剂-金属络合物介导的,其中金属添加剂与表面的相互作用具有诱导重组的潜力,并且这种络合物的形成在这些研究中是特别感兴趣的。理论研究利用密度泛函理论来评估控制上述行为的金属-金属和金属-添加剂能量学。这些能量为STM研究中观察到的表面结构和动力学的统计力学模型提供了信息。该项目为初级科学家提供一系列复杂的实验和通用建模技术的培训,这些技术使化学材料和纳米技术对美国具有重要意义。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ab Initio Thermodynamics and Kinetics for Coalescence of Two-Dimensional Nanoislands and Nanopits on Metal (100) Surfaces
- DOI:10.1021/acs.jpcc.6b07328
- 发表时间:2016-09
- 期刊:
- 影响因子:3.7
- 作者:Yong Han;C. Stoldt;P. Thiel;J. Evans
- 通讯作者:Yong Han;C. Stoldt;P. Thiel;J. Evans
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Thiel其他文献
When all pieces fit together
当所有部分拼凑在一起时
- DOI:
10.1038/nmat1814 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:38.500
- 作者:
Patricia Thiel - 通讯作者:
Patricia Thiel
Patricia Thiel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Thiel', 18)}}的其他基金
Formation and Stability of Supported Metal Nanostructures
负载金属纳米结构的形成和稳定性
- 批准号:
1111500 - 财政年份:2011
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Acquisition of a Time-of-Flight Mass Spectrometer
购买飞行时间质谱仪
- 批准号:
0077960 - 财政年份:2000
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Conference and Workshops on the Properties of Quasicrystals; Iowa State University and/or Ames Laboratory; Ames, Iowa; August 19-23, 1996
准晶体特性会议和讲习班;
- 批准号:
9632918 - 财政年份:1996
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research: Growth and Morphology in a Model Thin Film System
美德合作研究:模型薄膜系统中的生长和形态
- 批准号:
9213987 - 财政年份:1993
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Faculty Award for Women: Reactions at Metal Surfaces
女性教师奖:金属表面反应
- 批准号:
9024358 - 财政年份:1991
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Nonequilibrium Structure of Metal Films
金属薄膜的非平衡结构
- 批准号:
9014214 - 财政年份:1990
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Presidential Young Investigator Award/Reconstruction in Thin Films
总统青年研究员奖/薄膜重建
- 批准号:
8451317 - 财政年份:1985
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
相似国自然基金
衰老抑制脊髓损伤修复的CXCL13依赖性CD8+T细胞通讯机制研究
- 批准号:82371585
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
当归芍药散基于双向调控Ras/cAMP-dependent PKA自噬通路的“酸甘化阴、辛甘化阳”的药性基础
- 批准号:81973497
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
CDK5调节羊驼黑色素生成的作用研究
- 批准号:31201868
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
蒺藜苜蓿细胞周期蛋白依赖性激酶(cyclin-dependent kinase)对根瘤发育的功能研究
- 批准号:31100871
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
铁磁、半金属-超导异质结中电子输运的理论研究
- 批准号:60971053
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
Riesz乘积和树上的分枝测度的重分形分析
- 批准号:10826054
- 批准年份:2008
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
CaMK II信号转导通路参与前扣带回皮质调节IBS大鼠的内脏痛觉
- 批准号:30800512
- 批准年份:2008
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
Posphoinositide-dependent kinase-1在肿瘤细胞趋化运动和转移中的作用机制
- 批准号:30772529
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
2415034 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
CAREER: Chemoenzymatic Synthesis of Complex Polycyclic Alkaloids Enabled by A-Ketoglutarate Dependent Iron Enzymes
职业:通过 A-酮戊二酸依赖性铁酶实现复杂多环生物碱的化学酶法合成
- 批准号:
2338495 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Continuing Grant
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
- 批准号:
BB/Y001206/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
Elucidating type 1 conventional dendritic cell-dependent anti-tumour immune responses in brain metastases
阐明脑转移瘤中 1 型传统树突状细胞依赖性抗肿瘤免疫反应
- 批准号:
MR/Y013328/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
An explainability oriented approach to manage dependent supply chain risks
一种以可解释性为导向的方法来管理相关供应链风险
- 批准号:
LP230100379 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Linkage Projects
Molecular mechanism of the PRC-dependent RNA degradation by the rixosome
核糖体PRC依赖性RNA降解的分子机制
- 批准号:
DP240101212 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Discovery Projects
Planning: FIRE-PLAN: Merging diverse knowledge systems to advance restoration of fire-dependent forests in the Great Lakes region
规划:FIRE-PLAN:融合不同的知识系统,推进五大湖地区依赖火灾的森林的恢复
- 批准号:
2335838 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404369 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404368 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant