Nano-Reactor Assembly Across Multiple Lengthscales
跨多个长度尺度的纳米反应器组件
基本信息
- 批准号:1507282
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical: This award by the Biomaterials program in the Division of Materials Research to University of Indiana is to use biological processes and directed self-assembly to make a new generation of materials to overcome their limitations. The investigator sees the biological cell as an inspiration for the design of new complex materials, assembled from molecular components across many different length scales. Currently, even the simplest living systems exhibit complexity that is well beyond the ability to mimic synthetically. The power of biological cells to respond to environmental stress lies in their ability to regulate biochemical networks of enzyme-mediated reactions. Harnessing the power and complexity of enzymes, and enzyme networks, for the synthetic development of complex catalytic materials has not been realized in part due to the fragility of enzymes and their incompatibility with materials processing approaches. This project will develop a set of design rules to incorporate materials properties and catalytic functions to bioinspired materials. This researcher expects these materials to make impacts in areas of bio-designed catalysis and that their utilization will lead to the development of more energy-efficient, renewable, safe and affordable technologies. As an integral part of the project, this investigator will continue to develop science outreach programming wherein undergraduate and graduate students, participating in cutting-edge science, will also learn to effectively communicate their research to the general public and inspire the next generation of scientists. This will be achieved through partnerships with local and regional schools in which long-term relationships between teachers, students, and researchers can foster an excitement about science and connect with youth and communities that are underrepresented in the sciences.Technical: Using a bioinspired approach, this researcher will develop a complex self-assembling system to create protein cage architectures in which multiple copies of up to 3 enzymes are encapsulated with controlled adjacency and stoichiometry. These enzymes perform a coupled cascade of reactions, creating a material capable of effecting a synthetic metabolic pathway for methanol (and potentially methane) oxidation. In addition, a mathematical model is developed for predicting the kinetics for coupled reactions under co-localized conditions, based on the diffusion length of intermediates between partner enzymes. The planned kinetic studies showed that intermediate channeling between sequential enzymes is dependent on both the inter-enzyme distance as well as a balance between the kinetic parameters of the two enzymes, a finding that challenges the simplistic view that any co-localization will automatically yield enhanced overall activities. In addition, individual nanoreactor particles can be assembled into ordered hierarchical arrays providing a path forward for the programmed assembly of bulk materials built from individual protein cages and having designed complex catalytic properties. Thus, using naturally occurring and designed molecular components, the investigator will construct complex catalytically active materials through directed self-assembly of modular building blocks at multiple lengthscales. Graduate student training in the context of this research will include: structural studies using cryo-electron microscopy and image reconstruction to evaluate the packing of enzymes within the self-assembled protein cage architectures; mass spectrometry to evaluate changes in enzyme dynamics due crowding effects; dynamic and static (multi-angle) light scattering to evaluate the self-assembly processes from molecular components to materials; small angle x-ray scattering (Argonne National lab (APS) and Brookhaven National Lab (NSLS II) to probe the long range order in the assembly of protein cage materials. The students will be trained in the relevant characterization techniques.
非技术:该奖项由印第安纳大学材料研究部生物材料项目颁发,旨在利用生物过程和定向自组装来制造新一代材料,以克服其局限性。研究人员将生物细胞视为设计新型复杂材料的灵感来源,这些材料由许多不同长度尺度的分子成分组装而成。目前,即使是最简单的生命系统,其复杂性也远远超出了人工模拟的能力。生物细胞应对环境压力的能力在于它们调节酶介导反应的生化网络的能力。利用酶和酶网络的力量和复杂性来合成复杂的催化材料还没有实现,部分原因是酶的脆弱性及其与材料加工方法的不相容性。该项目将开发一套设计规则,将材料特性和催化功能结合到生物灵感材料中。该研究人员期望这些材料在生物设计催化领域产生影响,并且它们的利用将导致更节能、可再生、安全和负担得起的技术的发展。作为该项目的一个组成部分,该研究员将继续开发科学推广计划,其中本科生和研究生参与尖端科学,也将学习如何有效地将他们的研究与公众交流,并激励下一代科学家。这将通过与当地和地区学校的合作来实现,在这种合作中,教师、学生和研究人员之间的长期关系可以培养对科学的热情,并与在科学领域代表性不足的青年和社区建立联系。技术:使用生物启发的方法,该研究人员将开发一个复杂的自组装系统来创建蛋白质笼结构,其中多达3个酶的多个拷贝被包裹在控制的邻接和化学计量中。这些酶执行耦合级联反应,产生能够影响甲醇(和潜在的甲烷)氧化合成代谢途径的材料。此外,还建立了一个数学模型,用于预测共定域条件下偶联反应的动力学,该模型基于伙伴酶之间中间体的扩散长度。计划中的动力学研究表明,顺序酶之间的中间通道既依赖于酶间距离,也依赖于两种酶的动力学参数之间的平衡,这一发现挑战了任何共定位都会自动提高整体活性的简单观点。此外,单个纳米反应器颗粒可以组装成有序的层次阵列,为由单个蛋白质笼构建的散装材料的程序化组装提供了一条前进的道路,并具有设计的复杂催化性能。因此,使用自然发生和设计的分子成分,研究者将通过在多个长度尺度上的模块化构建块的定向自组装来构建复杂的催化活性材料。本研究背景下的研究生培训将包括:使用低温电子显微镜和图像重建进行结构研究,以评估自组装蛋白质笼结构中酶的包装;质谱法评价拥挤效应引起的酶动力学变化;动态和静态(多角度)光散射评价从分子组分到材料的自组装过程;小角度x射线散射(美国阿贡国家实验室(APS)和布鲁克海文国家实验室(NSLS II)),以探测蛋白质笼材料组装的长程顺序。学生将接受相关表征技术的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevor Douglas其他文献
Bipartite Network Analysis of (bio)CHEMICAL Reaction Systems
- DOI:
10.1016/j.bpj.2010.12.1127 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Craig C. Jolley;Trevor Douglas - 通讯作者:
Trevor Douglas
2089 Detecting inflammation in atherosclerosis using protein cage nanoparticles as cellular imaging agents
- DOI:
10.1186/1532-429x-10-s1-a358 - 发表时间:
2008-10-22 - 期刊:
- 影响因子:
- 作者:
Masahiro Terashima;Masaki Uchida;Hisanori Kosuge;Shay Keren;Philip S Tsao;Mark J Young;Trevor Douglas;Michael V McConnell - 通讯作者:
Michael V McConnell
Ordered association of tobacco mosaic virus in the presence of divalent metal ions.
二价金属离子存在下烟草花叶病毒的有序缔合。
- DOI:
10.1016/s0162-0134(01)00174-x - 发表时间:
2001 - 期刊:
- 影响因子:3.9
- 作者:
Aleksey Nedoluzhko;Trevor Douglas - 通讯作者:
Trevor Douglas
Development of a genetic system for the archaeal virus <em>Sulfolobus</em> turreted icosahedral virus (STIV)
- DOI:
10.1016/j.virol.2011.03.023 - 发表时间:
2011-06-20 - 期刊:
- 影响因子:
- 作者:
Jennifer Fulton Wirth;Jamie C. Snyder;Rebecca A. Hochstein;Alice C. Ortmann;Deborah A. Willits;Trevor Douglas;Mark J. Young - 通讯作者:
Mark J. Young
Hot crenarchaeal viruses reveal deep evolutionary connections
热泉古生菌病毒揭示了深层的进化联系
- DOI:
10.1038/nrmicro1444 - 发表时间:
2006-06-06 - 期刊:
- 影响因子:103.300
- 作者:
Alice C. Ortmann;Blake Wiedenheft;Trevor Douglas;Mark Young - 通讯作者:
Mark Young
Trevor Douglas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trevor Douglas', 18)}}的其他基金
Self-Assembled Protein Cage Nanoreactors
自组装蛋白笼纳米反应器
- 批准号:
1435460 - 财政年份:2014
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Self-Assembled Protein Cage Nanoreactors
自组装蛋白笼纳米反应器
- 批准号:
1104849 - 财政年份:2011
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
NIRT: Exploiting Protein Cage Dynamics to Engineer Active Nanostructures
NIRT:利用蛋白质笼动力学设计活性纳米结构
- 批准号:
0709358 - 财政年份:2007
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Constrained Materials Synthesis Using Assembled Virus Cages
使用组装病毒笼合成受限材料
- 批准号:
0296090 - 财政年份:2001
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Constrained Materials Synthesis Using Assembled Virus Cages
使用组装病毒笼合成受限材料
- 批准号:
9801685 - 财政年份:1998
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似海外基金
SBIR Phase II: Scaling and Tailoring the Destruction of Emerging Contaminants with the Plasma Water Reactor
SBIR 第二阶段:利用等离子水反应堆扩展和定制对新兴污染物的破坏
- 批准号:
2335872 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Cooperative Agreement
Modelling of oxidation of W and W-alloys in fusion reactor first walls
聚变反应堆第一壁中钨和钨合金氧化的模拟
- 批准号:
2504963 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Studentship
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
- 批准号:
24K08316 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated reactor platforms for accelerated discovery of next generation polymers
用于加速发现下一代聚合物的自动化反应器平台
- 批准号:
2911012 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Studentship
SBIR Phase I: Silane Recycling from Decommissioned Photovoltaics using Microgravity-analog Fluidized Bed Reactor with Sonication.
SBIR 第一阶段:使用超声处理的微重力模拟流化床反应器从退役光伏发电中回收硅烷。
- 批准号:
2323566 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Development of a new fluidized bed plasma catalytic gas reactor with carbon dioxide
新型二氧化碳流化床等离子体催化气体反应器的研制
- 批准号:
23H01751 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modelling and Simulation Framework for Nuclear Reactor Physics and Reactor Shielding
核反应堆物理和反应堆屏蔽的建模和仿真框架
- 批准号:
2891954 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Studentship
PFI (MCA): Hydrogen and Solid Carbon Production with Electrified Methane Pyrolysis in Zeolite-Protected, Metal Membrane Reactor
PFI (MCA):在沸石保护的金属膜反应器中通过带电甲烷热解生产氢气和固体碳
- 批准号:
2325780 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Dissipative Supramolecular Reactor
耗散超分子反应器
- 批准号:
22KF0395 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Gas reactor for in situ studies of photocatalysis and energy conversion processes
用于光催化和能量转换过程原位研究的气体反应器
- 批准号:
519099854 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Major Research Instrumentation














{{item.name}}会员




