Lie Algebras, Vertex Operator Algebras, and Related Topics
李代数、顶点算子代数及相关主题
基本信息
- 批准号:1507305
- 负责人:
- 金额:$ 4.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Lie Algebras, Vertex Operator Algebras, and Related Topics" will take place August 14-18, 2015 at the University of Notre Dame, Notre Dame, Indiana. The conference web page is http://www3.nd.edu/~conf/LieConf15/. This conference will bring together junior and senior researchers engaged in mathematical research related to the intersection of and interaction between the fields of algebra, geometry, and theoretical physics. The broader impacts are twofold: training of younger scientists and dissemination of new results and techniques. Expository talks by senior researchers will introduce junior researchers to the frontiers of mathematical research in the topics of the conference. The conference will provide an excellent setting for the exchange of ideas and for developing new collaborations. This conference is intended to be an important occasion for deepening and developing our understanding of Lie algebras, vertex algebras, quantum groups, and related structures from several different perspectives (algebraic, combinatorial and geometric), with some emphasis given to those fields of mathematics in which James Lepowsky and Robert Wilson made significant contributions. This conference is a necessary component in the timely development of these and related areas, especially in view of rapid developments in theoretical physics. The focus of this conference will be on the following topics: Representation theory of Lie algebras and quantum groups; Vertex operator algebras and their representations; and applications of Lie algebras, quantum groups and vertex operator algebras to other areas of mathematics and mathematical physics.
会议“李代数,顶点算子代数,及相关主题”将于2015年8月14日至18日在圣母大学,圣母大学,印第安纳州。会议的网页是http://www3.nd.edu/~conf/LieConf15/。本次会议将汇集初级和高级研究人员从事数学研究有关的交叉和代数,几何和理论物理领域之间的相互作用。更广泛的影响是双重的:培训年轻科学家和传播新成果和新技术。高级研究人员的解释性演讲将向初级研究人员介绍会议主题中的数学研究前沿。会议将为交流思想和发展新的合作提供一个极好的环境。这次会议的目的是深化和发展我们的理解李代数,顶点代数,量子群,以及相关的结构从几个不同的角度(代数,组合和几何)的一个重要场合,一些重点给予数学领域中,詹姆斯Lepowsky和罗伯特威尔逊作出了重大贡献。这次会议是及时发展这些和相关领域的必要组成部分,特别是考虑到理论物理学的快速发展。本次会议的重点将在以下主题:表示理论的李代数和量子群;顶点算子代数及其表示;和应用李代数,量子群和顶点算子代数的其他领域的数学和数学物理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katrina Barron其他文献
Katrina Barron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katrina Barron', 18)}}的其他基金
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705991 - 财政年份:1997
- 资助金额:
$ 4.7万 - 项目类别:
Fellowship Award
相似海外基金
Shuffle algebras and vertex models
洗牌代数和顶点模型
- 批准号:
DP240101787 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Discovery Projects
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
- 批准号:
EP/V053787/1 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Research Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Subatomic Physics Envelope - Individual
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
- 批准号:
EP/V053728/1 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Research Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New directions in vertex algebras and moonshine
顶点代数和 Moonshine 的新方向
- 批准号:
22K03264 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Quantum Airy Structures from Vertex Operator Algebras
顶点算子代数的更高量子艾里结构
- 批准号:
569537-2022 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
- 批准号:
2228888 - 财政年份:2022
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2021
- 资助金额:
$ 4.7万 - 项目类别:
Subatomic Physics Envelope - Individual