Correlating Transport with Ionomer Membrane Structure from Molecular to Micron Scales

将传输与从分子到微米尺度的离聚物膜结构相关联

基本信息

项目摘要

NON-TECHNICAL:Ionic polymer membranes are used to purify water, convert chemical energy to electrical energy (batteries and fuel cells), and conduct a wide variety of chemical separations. By controlling membrane chemical structure, it is possible to generate desirable highly conductive (but soft and liquid-like) regions that are surrounded and supported by mechanically and chemically robust regions. A key problem in designing new membranes lies in understanding the details of these various regions in the membranes, and how these regions affect the movement (transport) of water and ions such as lithium, sodium, and chloride. This project pulls together disparate techniques and theories, including nuclear magnetic resonance (NMR), computational simulations, electron microscopy, and X-ray analysis, to understand how membrane structure influences properties. Indeed, new insights into membrane behaviors can only arise from such a combined multi-disciplinary approach. Such new fundamental knowledge would enable the design of membrane structures to accelerate ion and water motions. In turn, these advances in design would provide valuable information to engineers and entrepreneurs to increase the efficiency and decrease the cost of devices such as water purification systems and advanced power sources. Since membrane technology represents a $15B (and growing) commercial market, such advances could bring huge gains in US productivity and competitiveness. The project also involves education and training of undergraduate and graduate students, as well as K-12 educational outreach.TECHNICAL:Membrane-separations applications such as reverse-osmosis water desalinization and fuel cells involve the selective transport of water, alcohols, and ions through an ion-containing polymer (an ionomer). What effects drive the transport of these various mobile species inside an ionomer membrane? These effects can be thought to arise from a combination of two major contributions: 1) local intermolecular interactions such as ion and water associations, polymer chain topology, or acidity; 2) morphological features such as phase symmetry (cylindrical, lamellar, cubic) and domain sizes and properties. This project will work toward an experimental and theoretical framework for quantitatively separating and fundamentally understanding these two major regimes that affect transport. By combining an array of cutting-edge nuclear magnetic resonance (NMR) methods combined with molecular dynamics simulations, microscopy and X-ray analyses, this project will systematically study water and ion diffusion as well as local intermolecular associations inside ionomer membranes and thus build a more comprehensive mechanistic understanding of permeation and selectivity in these materials. Starting with existing theories of molecular transport, fluid permeation through porous media, electrolytic transport, and oriented soft matter, new thinking and theories will arise regarding membrane behaviors. In a broader context, this project aims toward design of all new materials that are less expensive, more efficient in energy use, more robust, and more specific to desired tasks. Students and collaborators involved in this project will gain sophisticated and fundamental knowledge of polymer membrane behaviors. This new knowledge will be integrated into undergraduate and graduate polymer science classes on the Virginia Tech campus, and propagated to children and their parents in a K-12 educational outreach program in the New River Valley region of Southwest Virginia.
非技术性:离子聚合物膜用于净化水,将化学能转换为电能(电池和燃料电池),并进行各种化学分离。通过控制膜的化学结构,可以产生所需的高导电性(但柔软和类似液体的)区域,这些区域被机械和化学上坚固的区域包围和支撑。设计新膜的一个关键问题是了解膜中这些不同区域的细节,以及这些区域如何影响水和锂、钠和氯化物等离子的移动(运输)。该项目汇集了不同的技术和理论,包括核磁共振(核磁共振)、计算模拟、电子显微镜和X射线分析,以了解膜结构如何影响性能。事实上,对膜行为的新见解只有在这种综合的多学科方法中才能产生。这些新的基础知识将使膜结构的设计能够加速离子和水的运动。反过来,这些设计上的进步将为工程师和企业家提供有价值的信息,以提高净水系统和先进电源等设备的效率并降低成本。由于膜技术代表着一个价值150亿美元(而且还在不断增长)的商业市场,这样的进步可能会给美国的生产率和竞争力带来巨大的收益。该项目还包括本科生和研究生的教育和培训,以及K-12教育外展。技术:膜分离应用,如反渗透水淡化和燃料电池,涉及通过含离子聚合物(离聚体)选择性地传输水、醇和离子。是什么作用推动了这些不同的可移动物种在离聚体膜内的运输?这些效应可以被认为是两个主要贡献的组合:1)局部分子间相互作用,如离子和水缔合、聚合物链拓扑或酸性;2)形态特征,如相对称性(柱状、片状、立方)和结构域大小和性质。该项目将致力于建立一个实验和理论框架,以定量区分并从根本上理解影响运输的这两个主要制度。通过将一系列尖端的核磁共振方法与分子动力学模拟、显微镜和X射线分析相结合,该项目将系统地研究离聚体膜内的水和离子扩散以及局部分子间相互作用,从而建立对这些材料的渗透和选择性的更全面的机理理解。从现有的分子输运、流体渗透、电解输运、取向软物质等理论出发,将会出现有关膜行为的新思维和新理论。在更广泛的背景下,这个项目的目标是设计出更便宜、更高效、更坚固、更适合所需任务的所有新材料。参与该项目的学生和合作者将获得有关聚合物膜行为的复杂而基本的知识。这一新知识将被整合到弗吉尼亚理工大学校园的本科生和研究生聚合物科学课程中,并在弗吉尼亚州西南部新河谷地区的K-12教育推广计划中传播给孩子和他们的父母。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Rubbery versus Glassy Backbone Dynamics on Multiscale Transport in Polymer Membranes
橡胶状与玻璃状主链动力学对聚合物膜多尺度输运的影响
  • DOI:
    10.1021/acs.macromol.8b01830
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Chang, Kevin;Korovich, Andrew;Xue, Tianyi;Morris, William A.;Madsen, Louis A.;Geise, Geoffrey M.
  • 通讯作者:
    Geise, Geoffrey M.
Multiscale Tortuous Diffusion in Anion and Cation Exchange Membranes
  • DOI:
    10.1021/acs.macromol.8b02206
  • 发表时间:
    2019-01-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Thieu, Lam M.;Zhu, Liang;Madsen, Louis A.
  • 通讯作者:
    Madsen, Louis A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis Madsen其他文献

Louis Madsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louis Madsen', 18)}}的其他基金

Collaborative Research: Robust General Methods for Determination of Polyelectrolyte Molecular Weight and Polydispersity
合作研究:测定聚电解质分子量和多分散性的稳健通用方法
  • 批准号:
    2203753
  • 财政年份:
    2022
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Basis for General Molecular Weight Determination for Ionic Polymers
合作研究:离子聚合物通用分子量测定的基础
  • 批准号:
    1904746
  • 财政年份:
    2019
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Multi-Scale Self-Assembled Structure and Properties in Polymeric Molecular Composites
高分子复合材料的多尺度自组装结构和性能
  • 批准号:
    1810194
  • 财政年份:
    2018
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Symposium: NMR Spectroscopy of Polymers and Biobased Materials Pacifichem Conference
研讨会:聚合物和生物基材料的核磁共振波谱 Pacifichem 会议
  • 批准号:
    1542423
  • 财政年份:
    2015
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics and Self-Assembly in Block Copolymer Micelles for Tailored Cargo Delivery
合作研究:用于定制货物运输的嵌段共聚物胶束的动力学和自组装
  • 批准号:
    1437767
  • 财政年份:
    2014
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Supramolecular Ion Conducting Membranes
超分子离子导电膜
  • 批准号:
    1057797
  • 财政年份:
    2010
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Controlling Anisotropy and Transport in Lonomers
职业:理解和控制离聚物的各向异性和输运
  • 批准号:
    0844933
  • 财政年份:
    2009
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
  • 批准号:
    EP/Z000726/1
  • 财政年份:
    2025
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Fellowship
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
  • 批准号:
    2339634
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant
Antarctica's leaky defence to poleward heat transport
南极洲对极地热传输的防御漏洞
  • 批准号:
    DP240102358
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Discovery Projects
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
  • 批准号:
    EP/Z000254/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了