Multi-Scale Self-Assembled Structure and Properties in Polymeric Molecular Composites

高分子复合材料的多尺度自组装结构和性能

基本信息

项目摘要

NON-TECHNICAL SUMMARY:Charged polymers form the basis of solid materials that can be used to conduct lithium ions in a battery electrolyte, or used to purify salt water or other liquids. Normally, charged polymers are very flexible and do not have strong mechanical properties. This project involves a solid material formed from a mixture of a very rigid and strong charged polymer (similar to Kevlar(R)) and an ionic liquid (also known as a molten salt). This new material, which is called a molecular ionic composite (MIC), combines the best properties of solids and liquids. MIC materials are stiff and non-flammable solids and yet they can conduct ions like lithium and sodium with very low resistance, as if the ions were in a liquid. The properties of MICs can also be widely tailored for potential use in different applications such as water purifiers, electromechanical sensors, or artificial muscles. This project will combine cutting edge research tools such as nuclear magnetic resonance (NMR) and X-ray analyses, materials science theories, and computational molecular simulations in order to build fundamental understanding of how MIC materials work. By combining such interdisciplinary knowledge and insights, these researchers will work to create new designs for MIC materials for devices such as safer, cheaper, and more lightweight lithium batteries. This project shows promise for feeding into advanced battery materials technology, thus enabling a potential new avenue for US business impact on the $20B global battery market. Students and collaborators involved in this project will gain new knowledge about these novel polymeric conductors, and this new knowledge will be integrated into polymer science classes on the Virginia Tech campus and propagated to K-12 children and their parents in an educational outreach program based in Southwest Virginia. TECHNICAL SUMMARY:This project aims at a non-flammable solid with the modulus of poly(methyl methacrylate), but where a high density of ions inside move as if they were in a liquid. It builds on the discovery of a new class of polymeric ion conductors that are termed molecular ionic composites (MICs). The prototypical MICs, formed from a rigid-rod anion-containing polymer and an ionic liquid (IL), exhibit the following special combination of tunable properties: ionic conductivity up to 8 mS/cm, widely tunable elastic modulus (0.01−3 GPa), and thermal stability up to 300 degrees C. MICs show promise for allowing use of metal electrodes in lithium and sodium batteries, potentially enabling higher energy density as well as battery operation over a wide temperature range and with inherent fire resistance. While these materials display impressive properties, researchers are only beginning to understand the origins of why such fast ion transport is commensurate with such a stiff and robust material matrix. This project combines fundamental polymer analyses involving nuclear magnetic resonance (NMR), X-ray scattering, and microscopy with molecular dynamics simulations and theories of conduction and oriented matter. Better understanding of the fundamental nature of MICs could feed into design of new compositions to meet desired requirements for battery electrolytes or other molecular separations applications. Students and collaborators involved in this project will gain new knowledge about these novel polymeric conductors, and this new knowledge will be integrated into polymer science classes on the Virginia Tech campus and propagated to K-12 children and their parents in an educational outreach program based in Southwest Virginia.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述:带电聚合物是固体材料的基础,可用于在电池电解液中传导锂离子,或用于净化盐水或其他液体。通常情况下,带电聚合物非常灵活,不具有很强的机械性能。这个项目涉及一种固体材料,由一种非常坚硬和带电的强电聚合物(类似于芳纶(R))和一种离子液体(也称为熔融盐)的混合物形成。这种新材料被称为分子离子复合材料(MIC),它结合了固体和液体的最佳性能。MIC材料是坚硬且不可燃的固体,但它们可以导电锂和钠等离子,电阻非常低,就像离子在液体中一样。MIC的特性还可以广泛定制,以用于不同的应用,如净水器、机电传感器或人造肌肉。该项目将结合核磁共振(核磁共振)和X射线分析、材料科学理论和计算分子模拟等尖端研究工具,以建立对MIC材料工作原理的基本理解。通过结合这些跨学科的知识和见解,这些研究人员将致力于为更安全、更便宜、更轻的锂电池等设备创造MIC材料的新设计。该项目展示了引入先进电池材料技术的前景,从而为美国企业在价值200亿美元的全球电池市场上的影响开辟了一条潜在的新途径。参与该项目的学生和合作者将获得有关这些新型聚合物导体的新知识,这些新知识将被整合到弗吉尼亚理工大学校园的聚合物科学课程中,并在弗吉尼亚州西南部的一个教育推广计划中传播给K-12儿童及其家长。技术概述:该项目的目标是一种具有聚甲基丙烯酸甲酯模数的不可燃固体,但其中高密度的离子就像在液体中一样移动。它建立在一类新的聚合物离子导体的发现之上,这种导体被称为分子离子复合材料(MICS)。由刚性棒状阴离子聚合物和离子液体(IL)形成的原型MICs展示了以下可调特性的特殊组合:离子导电性高达8ms/cm,弹性模数可宽调(0.01−3 Gpa),热稳定性高达300℃。MICs展示了允许在锂和钠电池中使用金属电极的前景,潜在地实现了更高的能量密度,以及在广泛的温度范围内电池的运行,并具有固有的耐火性。虽然这些材料显示出令人印象深刻的特性,但研究人员才刚刚开始了解为什么如此快速的离子传输与如此坚硬和坚固的材料基质相称的起源。该项目将基础聚合物分析(包括核磁共振、X射线散射和显微分析)与分子动力学模拟以及传导和定向物质理论相结合。更好地了解MIC的基本性质可以用于设计新的组合物,以满足电池电解液或其他分子分离应用所需的要求。参与该项目的学生和合作者将获得有关这些新型聚合物导体的新知识,这些新知识将被整合到弗吉尼亚理工大学校园的聚合物科学课程中,并在弗吉尼亚州西南部的一个教育推广计划中传播给K-12儿童及其家长。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Rubbery versus Glassy Backbone Dynamics on Multiscale Transport in Polymer Membranes
橡胶状与玻璃状主链动力学对聚合物膜多尺度输运的影响
  • DOI:
    10.1021/acs.macromol.8b01830
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Chang, Kevin;Korovich, Andrew;Xue, Tianyi;Morris, William A.;Madsen, Louis A.;Geise, Geoffrey M.
  • 通讯作者:
    Geise, Geoffrey M.
Multiscale Tortuous Diffusion in Anion and Cation Exchange Membranes
  • DOI:
    10.1021/acs.macromol.8b02206
  • 发表时间:
    2019-01-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Thieu, Lam M.;Zhu, Liang;Madsen, Louis A.
  • 通讯作者:
    Madsen, Louis A.
Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates
  • DOI:
    10.1021/acsenergylett.9b02040
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Mitchell, James B.;Geise, Natalie R.;Augustyn, Veronica
  • 通讯作者:
    Augustyn, Veronica
Ionic interactions control the modulus and mechanical properties of molecular ionic composite electrolytes
  • DOI:
    10.1039/d1tc04119c
  • 发表时间:
    2021-11-22
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Bostwick, Joshua E.;Zanelotti, Curt J.;Colby, Ralph H.
  • 通讯作者:
    Colby, Ralph H.
Irreversible Shear-Activated Gelation of a Liquid Crystalline Polyelectrolyte
液晶聚电解质的不可逆剪切激活凝胶化
  • DOI:
    10.1021/acsmacrolett.0c00168
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Fox, Ryan J.;Hegde, Maruti;Zanelotti, Curt J.;Kumbhar, Amar S.;Samulski, Edward T.;Madsen, Louis A.;Picken, Stephen J.;Dingemans, Theo J.
  • 通讯作者:
    Dingemans, Theo J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis Madsen其他文献

Louis Madsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louis Madsen', 18)}}的其他基金

Collaborative Research: Robust General Methods for Determination of Polyelectrolyte Molecular Weight and Polydispersity
合作研究:测定聚电解质分子量和多分散性的稳健通用方法
  • 批准号:
    2203753
  • 财政年份:
    2022
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Basis for General Molecular Weight Determination for Ionic Polymers
合作研究:离子聚合物通用分子量测定的基础
  • 批准号:
    1904746
  • 财政年份:
    2019
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Correlating Transport with Ionomer Membrane Structure from Molecular to Micron Scales
将传输与从分子到微米尺度的离聚物膜结构相关联
  • 批准号:
    1507764
  • 财政年份:
    2015
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Symposium: NMR Spectroscopy of Polymers and Biobased Materials Pacifichem Conference
研讨会:聚合物和生物基材料的核磁共振波谱 Pacifichem 会议
  • 批准号:
    1542423
  • 财政年份:
    2015
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics and Self-Assembly in Block Copolymer Micelles for Tailored Cargo Delivery
合作研究:用于定制货物运输的嵌段共聚物胶束的动力学和自组装
  • 批准号:
    1437767
  • 财政年份:
    2014
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Supramolecular Ion Conducting Membranes
超分子离子导电膜
  • 批准号:
    1057797
  • 财政年份:
    2010
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Controlling Anisotropy and Transport in Lonomers
职业:理解和控制离聚物的各向异性和输运
  • 批准号:
    0844933
  • 财政年份:
    2009
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hierarchical Self-Assembly of 2D DNA Platform for Multi-Scale Nanoarray
多尺度纳米阵列2D DNA平台的分层自组装
  • 批准号:
    23K13646
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
  • 批准号:
    2153520
  • 财政年份:
    2022
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
  • 批准号:
    2153432
  • 财政年份:
    2022
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
A multi-scale approach for modeling self-healing concrete by coupling water ingress and crack healing process
通过耦合进水和裂缝愈合过程来模拟自修复混凝土的多尺度方法
  • 批准号:
    22K04257
  • 财政年份:
    2022
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Multi-Scale Micromechanical Properties of Hierarchical Coatings and Interfaces Fabricated by Self-Limiting Electrospray Deposition
合作研究:自限性电喷雾沉积制备的分层涂层和界面的多尺度微机械性能
  • 批准号:
    2019928
  • 财政年份:
    2020
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Micromechanical Properties of Hierarchical Coatings and Interfaces Fabricated by Self-Limiting Electrospray Deposition
合作研究:自限性电喷雾沉积制备的分层涂层和界面的多尺度微机械性能
  • 批准号:
    2019849
  • 财政年份:
    2020
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Multi-Scale Multi-Material Printing of 3D Bead Arrays via Self-Focused Electrohydrodynamic Jets
通过自聚焦电流体动力喷射进行 3D 珠阵列的多尺度多材料打印
  • 批准号:
    1934350
  • 财政年份:
    2020
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Multi-scale Study of Ecological, Self-healing, and Nano-engineered Self-centering Cementitious Composites for Modular Construction
用于模块化建筑的生态、自修复和纳米工程自定心水泥复合材料的多尺度研究
  • 批准号:
    RGPIN-2015-04817
  • 财政年份:
    2020
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Discovery Grants Program - Individual
NCS-FR: Protecting the Aging Brain: Self-Organizing Networks and Multi-Scale Dynamics under Energy Constraints
NCS-FR:保护衰老的大脑:能量约束下的自组织网络和多尺度动力学
  • 批准号:
    1926781
  • 财政年份:
    2019
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Multi-scale Study of Ecological, Self-healing, and Nano-engineered Self-centering Cementitious Composites for Modular Construction
用于模块化建筑的生态、自修复和纳米工程自定心水泥复合材料的多尺度研究
  • 批准号:
    RGPIN-2015-04817
  • 财政年份:
    2019
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了