Multi-Scale Self-Assembled Structure and Properties in Polymeric Molecular Composites

高分子复合材料的多尺度自组装结构和性能

基本信息

项目摘要

NON-TECHNICAL SUMMARY:Charged polymers form the basis of solid materials that can be used to conduct lithium ions in a battery electrolyte, or used to purify salt water or other liquids. Normally, charged polymers are very flexible and do not have strong mechanical properties. This project involves a solid material formed from a mixture of a very rigid and strong charged polymer (similar to Kevlar(R)) and an ionic liquid (also known as a molten salt). This new material, which is called a molecular ionic composite (MIC), combines the best properties of solids and liquids. MIC materials are stiff and non-flammable solids and yet they can conduct ions like lithium and sodium with very low resistance, as if the ions were in a liquid. The properties of MICs can also be widely tailored for potential use in different applications such as water purifiers, electromechanical sensors, or artificial muscles. This project will combine cutting edge research tools such as nuclear magnetic resonance (NMR) and X-ray analyses, materials science theories, and computational molecular simulations in order to build fundamental understanding of how MIC materials work. By combining such interdisciplinary knowledge and insights, these researchers will work to create new designs for MIC materials for devices such as safer, cheaper, and more lightweight lithium batteries. This project shows promise for feeding into advanced battery materials technology, thus enabling a potential new avenue for US business impact on the $20B global battery market. Students and collaborators involved in this project will gain new knowledge about these novel polymeric conductors, and this new knowledge will be integrated into polymer science classes on the Virginia Tech campus and propagated to K-12 children and their parents in an educational outreach program based in Southwest Virginia. TECHNICAL SUMMARY:This project aims at a non-flammable solid with the modulus of poly(methyl methacrylate), but where a high density of ions inside move as if they were in a liquid. It builds on the discovery of a new class of polymeric ion conductors that are termed molecular ionic composites (MICs). The prototypical MICs, formed from a rigid-rod anion-containing polymer and an ionic liquid (IL), exhibit the following special combination of tunable properties: ionic conductivity up to 8 mS/cm, widely tunable elastic modulus (0.01−3 GPa), and thermal stability up to 300 degrees C. MICs show promise for allowing use of metal electrodes in lithium and sodium batteries, potentially enabling higher energy density as well as battery operation over a wide temperature range and with inherent fire resistance. While these materials display impressive properties, researchers are only beginning to understand the origins of why such fast ion transport is commensurate with such a stiff and robust material matrix. This project combines fundamental polymer analyses involving nuclear magnetic resonance (NMR), X-ray scattering, and microscopy with molecular dynamics simulations and theories of conduction and oriented matter. Better understanding of the fundamental nature of MICs could feed into design of new compositions to meet desired requirements for battery electrolytes or other molecular separations applications. Students and collaborators involved in this project will gain new knowledge about these novel polymeric conductors, and this new knowledge will be integrated into polymer science classes on the Virginia Tech campus and propagated to K-12 children and their parents in an educational outreach program based in Southwest Virginia.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:带电的聚合物构成了可用于在电池电解质中进行锂离子或用于净化盐水或其他液体的实心材料的基础。 通常,带电的聚合物非常灵活,并且没有强大的机械性能。 该项目涉及由非常刚性且强烈的聚合物(类似于Kevlar(R))和离子液体(也称为熔融盐)的混合物形成的固体材料。 这种称为分子离子复合材料(MIC)的新材料结合了固体和液体的最佳特性。 麦克风材料是僵硬且不可易燃的固体,但它们可以通过极低的耐药性进行离子等离子,好像离子在液体中一样。 麦克风的特性也可以广泛量身定制,以便在不同的应用中使用,例如净水器,机电传感器或人造肌肉。 该项目将结合前沿研究工具,例如核磁共振(NMR)和X射线分析,材料科学理论和计算分子模拟,以建立对MIC材料如何工作的基本了解。 通过结合此类跨学科知识和见解,这些研究人员将致力于为MIC材料创建新的设计,以使用更安全,更便宜,更轻巧的锂电池等设备。 该项目显示出有望进入先进的电池材料技术,从而为美国业务对全球$ 20B的全球电池市场产生影响的潜在新途径。 参与该项目的学生和合作者将获得有关这些新型聚合物导体的新知识,并且这些新知识将纳入弗吉尼亚理工大学校园的聚合物科学课程中,并在基于弗吉尼亚州西南部的教育外展计划中传播给K-12儿童及其父母。技术摘要:该项目的目的是具有聚(甲基丙烯酸甲基甲基甲基甲基甲基甲基甲基)模量的不可易受耐受固体,但内部的高密度移动,就好像它们在液体中一样。 它建立在发现一种新的聚合离子导体的基础上,该聚合物离子导体称为分子离子复合材料(MICS)。 The prototypical MICs, formed from a rigid-rod anion-containing polymer and an ionic liquid (IL), exhibit the following special combination of tunable properties: ionic conductivity up to 8 mS/cm, widely tunable elastic modulus (0.01−3 GPa), and thermal stability up to 300 degrees C. MICs show promise for allowing use of metal electrodes in lithium and钠电池,有可能在较宽的温度范围内且具有固有的火力阻力,可以实现更高的能量密度以及电池运行。 尽管这些材料表现出令人印象深刻的特性,但研究人员才刚刚开始理解为什么这种快速离子传输与如此坚硬且坚固的材料矩阵相称的原因。 该项目将涉及核磁共振(NMR),X射线散射和显微镜的基本聚合物分析与分子动力学模拟以及传导和方向物质的理论相结合。 更好地理解麦克风的基本性质,可以融入新组合物的设计,以满足电池电解质或其他分子分离应用所需的要求。 参与该项目的学生和合作者将获得有关这些新型聚合物导体的新知识,并且这些新知识将融入弗吉尼亚理工大学校园的聚合物科学课程中,并在基于弗吉尼亚州西南部的教育宣传计划中传播给K-11的儿童及其父母。该奖项奖励NSF的法定任务,并反映了通过评估的构成群体的支持者,该奖项被认为是众所周知的构成者的构成者的构成师。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Rubbery versus Glassy Backbone Dynamics on Multiscale Transport in Polymer Membranes
橡胶状与玻璃状主链动力学对聚合物膜多尺度输运的影响
  • DOI:
    10.1021/acs.macromol.8b01830
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Chang, Kevin;Korovich, Andrew;Xue, Tianyi;Morris, William A.;Madsen, Louis A.;Geise, Geoffrey M.
  • 通讯作者:
    Geise, Geoffrey M.
Multiscale Tortuous Diffusion in Anion and Cation Exchange Membranes
  • DOI:
    10.1021/acs.macromol.8b02206
  • 发表时间:
    2019-01-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Thieu, Lam M.;Zhu, Liang;Madsen, Louis A.
  • 通讯作者:
    Madsen, Louis A.
Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates
  • DOI:
    10.1021/acsenergylett.9b02040
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Mitchell, James B.;Geise, Natalie R.;Augustyn, Veronica
  • 通讯作者:
    Augustyn, Veronica
Ionic interactions control the modulus and mechanical properties of molecular ionic composite electrolytes
  • DOI:
    10.1039/d1tc04119c
  • 发表时间:
    2021-11-22
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Bostwick, Joshua E.;Zanelotti, Curt J.;Colby, Ralph H.
  • 通讯作者:
    Colby, Ralph H.
Irreversible Shear-Activated Gelation of a Liquid Crystalline Polyelectrolyte
液晶聚电解质的不可逆剪切激活凝胶化
  • DOI:
    10.1021/acsmacrolett.0c00168
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Fox, Ryan J.;Hegde, Maruti;Zanelotti, Curt J.;Kumbhar, Amar S.;Samulski, Edward T.;Madsen, Louis A.;Picken, Stephen J.;Dingemans, Theo J.
  • 通讯作者:
    Dingemans, Theo J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis Madsen其他文献

Louis Madsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louis Madsen', 18)}}的其他基金

Collaborative Research: Robust General Methods for Determination of Polyelectrolyte Molecular Weight and Polydispersity
合作研究:测定聚电解质分子量和多分散性的稳健通用方法
  • 批准号:
    2203753
  • 财政年份:
    2022
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Basis for General Molecular Weight Determination for Ionic Polymers
合作研究:离子聚合物通用分子量测定的基础
  • 批准号:
    1904746
  • 财政年份:
    2019
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Correlating Transport with Ionomer Membrane Structure from Molecular to Micron Scales
将传输与从分子到微米尺度的离聚物膜结构相关联
  • 批准号:
    1507764
  • 财政年份:
    2015
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Symposium: NMR Spectroscopy of Polymers and Biobased Materials Pacifichem Conference
研讨会:聚合物和生物基材料的核磁共振波谱 Pacifichem 会议
  • 批准号:
    1542423
  • 财政年份:
    2015
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics and Self-Assembly in Block Copolymer Micelles for Tailored Cargo Delivery
合作研究:用于定制货物运输的嵌段共聚物胶束的动力学和自组装
  • 批准号:
    1437767
  • 财政年份:
    2014
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Standard Grant
Supramolecular Ion Conducting Membranes
超分子离子导电膜
  • 批准号:
    1057797
  • 财政年份:
    2010
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Controlling Anisotropy and Transport in Lonomers
职业:理解和控制离聚物的各向异性和输运
  • 批准号:
    0844933
  • 财政年份:
    2009
  • 资助金额:
    $ 43.86万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
  • 批准号:
    32370477
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于容量驱动的大规模异构天线阵列关键技术研究
  • 批准号:
    62301460
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向非对称收发机的大规模MIMO传输理论与方法研究
  • 批准号:
    62301221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RP4 LEAP
RP4飞跃
  • 批准号:
    10595904
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
Promoting Viral Suppression through the CHAMPS+ Intervention in the Deep South
通过 CHAMPS 干预南部腹地促进病毒抑制
  • 批准号:
    10819823
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
A randomized clinical trial of client-centered care coordination to improve pre-exposure prophylaxis use for Black men who have sex with men
一项以客户为中心的护理协调的随机临床试验,以改善男男性行为黑人的暴露前预防使用
  • 批准号:
    10762186
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
Ssimusango: Multi-level intervention for intersectional stigma reduction to improve HIV outcomes for transgender women
西穆桑戈:多层次干预减少交叉耻辱,以改善跨性别女性的艾滋病毒结果
  • 批准号:
    10755926
  • 财政年份:
    2023
  • 资助金额:
    $ 43.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了