SusChEM: Material and Morphometric Control of Bacterial Cellulose via Genetic Engineering, Post-Processing and 3D-Printed Molding

SusChEM:通过基因工程、后处理和 3D 打印成型对细菌纤维素进行材料和形态控制

基本信息

  • 批准号:
    1508072
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical: This award by the Biomaterials Program in the Division of Materials Research, co-funded by the Division of Chemical, Bioengineering, Environmental, and Transport Systems, to Massachusetts Institute of Technology is for the development of new class of sustainable materials that are grown using bacteria to have enhanced structure and properties. More specifically, this research program proposes to gain unprecedented control and enhancement of the multiscale design of a technologically important living material system, bacterial cellulose, which has great potential for use as textiles, drug delivery devices, tissue engineering scaffolds, and sustainable building components. This research will enable simultaneous tuning of the material (structure and properties) and macroscopic 3D shape of this biopolymer. An interdisciplinary approach will be taken involving synthetic biology and genetic engineering, in-situ extracellular and materials processing, algorithmic design methods from the field of architecture, as well as powerful new additive manufacturing fabrication (3D printing with micron-scale spatial resolution). This study combines three disciplines - synthetic biology, materials science, and architectural design and has a broader impact contribution for all three. For synthetic biology, foundational methodologies are created that could be extended to any biological polymer (e.g. protein block co-polymers, cellulose, amyloids, etc.). For architectural design, the opportunity to apply methods of algorithmic design and additive manufacturing to living matter is novel and opens up new questions about possibilities of design in interaction with biological growth and material formation to produce sustainable and environmentally responsive materials and building components from renewable resources. For materials science, the project suggests systematic study of combination of material structure, properties and morphometry as a way to design materials and further enhance their function and performance with specific functionalization through synthetic gene networks regulated by external stimuli. Participation in these projects will educate students to cross disciplinary boundaries and work across scales of resolution to develop sustainable design manufacturing techniques for microbial production. Additional educational activities for this study include Independent Activity Period (IAP) interdisciplinary class at MIT "Designing Shape, Material, and Life", instruction in the worldwide synthetic biology competition for undergraduate and high school students iGEM (International Genetic Engineering Machine), and science exhibitions, such as MIT Museum and Cambridge Science Fair. Lastly, mentoring of summer students via undergraduate research programs at MIT will be carried out.Technical:This research program proposes to control and tune the material (structure and properties) and macroscopic morphometry (3D shape) of a technologically important model system (bacterial cellulose), which has potential for use as textiles, drug delivery devices, tissue engineering scaffolds, and sustainable building components. An interdisciplinary approach is taken involving synthetic biology and genetic engineering, in-situ extracellular and materials processing, algorithmic design methods from the field of architecture, as well as powerful new additive manufacturing fabrication (3D printing with micron-scale spatial resolution). The first aim of this research is to modulate the structure and properties of cellulose as it is synthesized by the bacteria Gluconacetobacter xylinus via the use of UV lithography regulation and synthetic biological networks encoding fusion proteins production. Secondly, the role of the in situ extracellular physicochemical environmental conditions and perturbations on the structure and properties of bacterial cellulose will be investigated. The resulting macromolecular structure and properties of the produced cellulose will be assessed by cross-polarized optical, electron and atomic-force microscopy, X-ray diffraction, nuclear magnetic resonance, Fourier Transform Infrared Spectroscopy, multi-directional mechanical testing, and nanoindentation. Lastly, algorithmic design and 3D printing will be utilized to fabricate increasingly complex macroscopic structures with tunable geometric parameters of molds which are subsequently used to cast polydimethylsiloxane substrates for in situ culture and growth of genetically engineered bacterial cellulose.
非技术类:该奖项由材料研究部生物材料项目授予麻省理工学院,由化学、生物工程、环境和运输系统部门共同资助,用于开发新型可持续材料,这些材料是利用细菌培养的,具有增强的结构和性能。更具体地说,这项研究计划提出了前所未有的控制和增强技术上重要的生命材料系统的多尺度设计,细菌纤维素,它在纺织品、药物输送装置、组织工程支架和可持续建筑组件方面具有巨大的潜力。这项研究将使这种生物聚合物的材料(结构和性能)和宏观3D形状同时调整成为可能。将采取跨学科的方法,包括合成生物学和基因工程,原位细胞外和材料处理,建筑领域的算法设计方法,以及强大的新型增材制造制造(具有微米尺度空间分辨率的3D打印)。这项研究结合了三个学科——合成生物学、材料科学和建筑设计,并对这三个学科都有更广泛的影响贡献。合成生物学的基础方法可以扩展到任何生物聚合物(例如,蛋白质块共聚物,纤维素,淀粉样蛋白等)。对于建筑设计而言,将算法设计和增材制造方法应用于生物物质的机会是新颖的,并且开辟了关于设计与生物生长和材料形成相互作用的可能性的新问题,从而从可再生资源中生产可持续的和对环境敏感的材料和建筑组件。在材料科学方面,本项目建议系统地研究材料结构、性能和形态的结合,通过外部刺激调节的合成基因网络,设计材料,并进一步增强其功能和性能,实现特定的功能化。参与这些项目将教育学生跨越学科界限和跨分辨率的工作,以开发微生物生产的可持续设计制造技术。本研究的额外教育活动包括麻省理工学院的独立活动期(IAP)跨学科课程“设计形状,材料和生命”,指导本科生和高中生的全球合成生物学竞赛iGEM(国际基因工程机器),以及科学展览,如麻省理工学院博物馆和剑桥科学博览会。最后,将通过麻省理工学院的本科生研究项目指导暑期学生。技术:本研究计划提出控制和调整技术上重要的模型系统(细菌纤维素)的材料(结构和性能)和宏观形态测量(3D形状),该模型系统具有用作纺织品,药物输送装置,组织工程支架和可持续建筑组件的潜力。采用跨学科的方法,包括合成生物学和基因工程,原位细胞外和材料处理,建筑领域的算法设计方法,以及强大的新型增材制造制造(具有微米尺度空间分辨率的3D打印)。本研究的第一个目的是通过使用UV光刻调节和合成生物网络编码融合蛋白生产来调节由细菌葡萄糖醋杆菌合成的纤维素的结构和性质。其次,研究了原位胞外物理化学环境条件和扰动对细菌纤维素结构和性质的影响。所得纤维素的大分子结构和性质将通过交叉极化光学、电子和原子力显微镜、x射线衍射、核磁共振、傅立叶变换红外光谱、多向机械测试和纳米压痕来评估。最后,算法设计和3D打印将用于制造越来越复杂的宏观结构,具有可调的模具几何参数,随后用于铸造聚二甲基硅氧烷底物,用于基因工程细菌纤维素的原位培养和生长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christine Ortiz其他文献

MIT Open Access Articles Mechanics of Indentation into Micro-and Nanoscale Forests of Tubes, Rods, or Pillars
麻省理工学院开放获取文章微米和纳米级管、棒或柱森林的压痕机制
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lifeng Wang;Christine Ortiz;M. Boyce
  • 通讯作者:
    M. Boyce
Morphometric structural diversity of a natural armor assembly investigated by 2D continuum strain analysis
  • DOI:
    10.1016/j.jsb.2015.10.011
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Swati Varshney;Juha Song;Yaning Li;Mary C. Boyce;Christine Ortiz
  • 通讯作者:
    Christine Ortiz
Health seeking behaviour and household health expenditures in Benin and Guinea: the equity implications of the Bamako Initiative.
贝宁和几内亚的求医行为和家庭医疗支出:巴马科倡议的公平影响。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Soucat;T. Gandaho;Daniel Levy;X. D. Bethune;Eusébe Alihonou;Christine Ortiz;P. Gbedonou;P. Adovohekpe;Ousmane Camara;J. Ndiaye;B. Dieng;R. Knippenberg
  • 通讯作者:
    R. Knippenberg
Disclosing Concerns of Latinas Living With HIV/AIDS
揭露拉丁裔艾滋病毒/艾滋病感染者的担忧
  • DOI:
    10.1177/1043659605274970
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Christine Ortiz
  • 通讯作者:
    Christine Ortiz

Christine Ortiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christine Ortiz', 18)}}的其他基金

NSF Convergence Accelerator Track I: Mind over Matter: Socioresilient Materials Design: A New Paradigm For Addressing Global Challenges in Sustainability
NSF 融合加速器轨道 I:关注物质:社会弹性材料设计:应对全球可持续发展挑战的新范式
  • 批准号:
    2236190
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator: Socioresilient Infrastructure: Precision Materials, Assemblages, and Systems
NSF 融合加速器:社会弹性基础设施:精密材料、组件和系统
  • 批准号:
    2035215
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
The Role of Genetic Modifications, Age and Exercise on Cartilage Biomechanics using Genetically Engineered Mice
使用基因工程小鼠研究基因修饰、年龄和运动对软骨生物力学的作用
  • 批准号:
    1536233
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    0946798
  • 财政年份:
    2009
  • 资助金额:
    $ 39万
  • 项目类别:
    Fellowship Award
Nanomechanics of Cartilage Extracellular Matrix Macromolecules from Aged, Diseased, and Engineered Tissues
来自老化、患病和工程组织的软骨细胞外基质大分子的纳米力学
  • 批准号:
    0758651
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
GRADUATE RESEARCH FELLOWSHIP PROGRAM
研究生研究奖学金计划
  • 批准号:
    0645960
  • 财政年份:
    2006
  • 资助金额:
    $ 39万
  • 项目类别:
    Fellowship Award
PECASE: Molecular Design and Nanomechanical Testing of High-Toughness Biomimetic Polymeric Systems
PECASE:高韧性仿生聚合物系统的分子设计和纳米力学测试
  • 批准号:
    0094194
  • 财政年份:
    2001
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
NSF NATO POSTDOCTORAL FELLOWSHIPS
NSF 北约博士后奖学金
  • 批准号:
    9710882
  • 财政年份:
    1997
  • 资助金额:
    $ 39万
  • 项目类别:
    Fellowship Award

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Collaborative R&D
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
  • 批准号:
    BB/Y512412/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Training Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Training Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
World in your hand: Investigating the underlying mechanism of thermal material recognition and its interaction with multisensory information
手中的世界:研究热材料识别的基本机制及其与多感官信息的相互作用
  • 批准号:
    23K24934
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
  • 批准号:
    24K20065
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
DDRIG: Cementing Spaces: The Material That Made Room for New Cultures in the Twentieth-Century
DDRIG:水泥空间:为二十世纪新文化腾出空间的材料
  • 批准号:
    2341731
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了