SusChEM: Rational Design and Synthesis of Stable Strain- and Defect-Rich Cu/Ceramic Nanocomposites for Efficient CO2 Reduction

SusChEM:合理设计和合成稳定的应变和缺陷丰富的铜/陶瓷纳米复合材料,以有效减少二氧化碳排放

基本信息

  • 批准号:
    1508611
  • 负责人:
  • 金额:
    $ 35.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY: In this project, supported by the Ceramics Program in the Division of Materials Research, Professor Tewodros Asefa is developing novel nanoparticles containing defect- and strain-rich copper nanocrystals sandwiched between two metal oxides. These materials are being used to investigate the stability and catalytic activity of copper nanocrystals for the conversion of carbon dioxide (a greenhouse gas) to methanol (a synthetic fuel and a commodity chemical). While defect- and strain-rich copper nanocrystals have high catalytic activity for this chemical conversion, these very sites are also unfortunately unstable, and thus can easily lose their activity. This problem is overcome by the design of nanomaterials that comprise metal oxide cores and porous metal oxide shells around the strain- and defect-rich copper nanocrystals. This unique structure allows the nanocrystals to retain their catalytically super-active sites, while remaining stable and allowing for the systematic investigation of the interplay between the structures and catalytic properties of copper nanocrystals under high temperature (the condition used for converting carbon dioxide to methanol). State-of-the-art high-resolution neutron scattering techniques at the Center for High Resolution Neutron Scattering (CHRNS) in the National Institute of Standards and Technology (NIST) are being used to decipher the defects and strains on the nanoparticles and any changes that they may undergo during catalysis. The instrumentation at CHRNS allows for various unique characterizations of the structure and dynamics of the materials being developed. TECHNICAL DETAILS: While defect and strained sites on copper nanocrystals have been recently found to have high catalytic activity for high temperature chemical conversion of carbon dioxide to methanol, these very sites are also unfortunately thermodynamically unstable, and thus can easily undergo sintering and deactivation under these conditions. Key features of the research are the designing of core-shell nanoparticles containing stable and highly active, defect- and strain-rich copper nanocrystals sandwiched between metal oxide cores and porous metal oxide shells, and using the resulting nanocatalysts to provide a thorough understanding of the structure-property relationships of copper and other related metallic nanomaterials under high temperature catalytic conditions. The synthesis of such copper nanocrystals is carried out by a method called controlled ligand-assisted etching. The research ultimately uncovers key structural factors that need to be tailored in copper and other related metallic nanomaterials for the efficient catalysis of various reactions, including the conversion of carbon dioxide to methanol, or a greenhouse gas to a synthetic fuel or a commodity chemical. Additionally, the project provides training of a graduate student and three or more undergraduate students, including those from groups historically underrepresented in science and engineering. The students participating in this research gain interdisciplinary, hands-on training with a variety of materials synthetic methods, catalysis, and materials characterization using the infrastructure available at the Rutgers Laboratory for Surface Modification, as well as that available at NIST. Furthermore, the results from the research will be incorporated into graduate course offerings that address materials engineering for sustainable and renewable energy applications.
非技术摘要:在该项目中,在材料研究部的陶瓷计划的支持下,Tewodros Asefa教授正在开发含有夹在两个金属氧化物之间的缺陷和富含铜的铜纳米晶体的新型纳米颗粒。这些材料用于研究铜纳米晶体的稳定性和催化活性,以转化二氧化碳(一种温室气)为甲醇(一种合成燃料和商品化学物质)。尽管对于这种化学转化,但富含缺陷和应变的铜纳米晶体具有较高的催化活性,但不幸的是,这些位点也不稳定,因此很容易失去其活性。通过在应变和缺陷富含富含铜的铜纳米晶体周围包含金属氧化物芯和多孔金属氧化物壳的纳米材料的设计克服了这个问题。这种独特的结构使纳米晶体可以保留其催化超级活跃的位点,同时保持稳定,并可以系统地研究高温下铜纳米晶体之间的结构与催化性能之间的相互作用(用于将二氧化碳转化为甲醇的条件)。国家标准技术研究所(NIST)的高分辨率中子散射中心(CHRN)的最先进的高分辨率中子散射技术被用来破译纳米颗粒上的缺陷和菌株,以及在催化过程中它们可能经历的任何变化。 CHRN的仪器允许对正在开发的材料的结构和动力学进行各种独特的特征。技术细节:虽然最近发现铜纳米晶体上的缺陷和紧张的位点具有较高的催化活性,可用于将二氧化碳二氧化碳转化为甲醇,但不幸的是,这些位点在热力学上也不稳定,因此在这些条件下很容易受到烧结和失效。这项研究的主要特征是设计芯壳纳米颗粒,其中包含稳定,高度,缺陷和应变的富含铜纳米晶体,夹在金属氧化物核心和多孔金属氧化物壳之间,并使用结果纳米催化剂,从而使对铜的结构质量和其他相关的金属质体和其他相关的高度镇定型高温镇定型结构型结构型相关,以提供彻底的理解。这种铜纳米晶体的合成是通过一种称为受控配体辅助蚀刻的方法进行的。该研究最终发现需要在铜和其他相关金属纳米材料中定制的关键结构因子,以有效催化各种反应,包括将二氧化碳转化为甲醇,或温室气体转化为合成燃料或商品化学物质。此外,该项目还提供了研究生和三名或三个或更多本科生的培训,包括从历史上不足的科学和工程学人数不足的培训。参加这项研究的学生通过使用Rutgers实验室可用的基础设施进行表面修饰以及NIST可用的基础设施,并使用各种材料合成方法,催化和材料表征进行跨学科,动手培训。此外,研究的结果将纳入研究生课程中,以解决可持续和可再生能源应用的材料工程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tewodros Asefa其他文献

Continuous Henry reaction to a specific product over nanoporous silica-supported amine catalysts on fixed bed reactor
在固定床反应器上通过纳米孔二氧化硅负载的胺催化剂连续亨利反应生成特定产物
  • DOI:
    10.1016/j.apcata.2010.08.056
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Ankush V. Biradar;K. Sharma;Tewodros Asefa
  • 通讯作者:
    Tewodros Asefa
Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications
仿生纳米复合材料:从合成到潜在应用
  • DOI:
    10.1557/proc-711-hh5.5.1/aa5.5.1
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tewodros Asefa;N. Coombs;H. Grondey;M. Jaroniec;M. Kruk;M. MacLachlan;G. Ozin
  • 通讯作者:
    G. Ozin
Introduction to Nanocatalysis
纳米催化简介
  • DOI:
    10.1002/9781118609811.ch1
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Polshettiwar;Tewodros Asefa
  • 通讯作者:
    Tewodros Asefa
Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose.
  • DOI:
    10.1002/anie.201107332
  • 发表时间:
    2012-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tewodros Asefa
  • 通讯作者:
    Tewodros Asefa
Synthesis and characterization of methyl- and vinyl-functionalized ordered mesoporous silicas with high organic content
高有机含量甲基和乙烯基功能化有序介孔二氧化硅的合成与表征

Tewodros Asefa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tewodros Asefa', 18)}}的其他基金

Structure-Property Studies of Novel Multifunctionally-Doped Core-Shell-Shell Nanomaterials for Improving Efficiency and Stability in Decontamination of Environmental Pollutants
新型多功能掺杂核-壳-壳纳米材料的结构-性能研究,用于提高环境污染物净化效率和稳定性
  • 批准号:
    1134289
  • 财政年份:
    2011
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
CAREER: Rationally Designing, Synthesizing and Self-Assembling Multifunctional, Hybrid Nanostructured Organosilica and Organosilica-Titania Materials for Catalysis
职业:合理设计、合成和自组装多功能、混合纳米结构有机二氧化硅和有机二氧化硅-二氧化钛催化材料
  • 批准号:
    1004218
  • 财政年份:
    2009
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
Controlled Synthesis of Mesoporous Silicon Oxynitride Ceramics by Nitridization of Mesoporous Organosilicas
介孔有机硅氮化控制合成介孔氮氧化硅陶瓷
  • 批准号:
    0968937
  • 财政年份:
    2009
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
Controlled Synthesis of Mesoporous Silicon Oxynitride Ceramics by Nitridization of Mesoporous Organosilicas
介孔有机硅氮化控制合成介孔氮氧化硅陶瓷
  • 批准号:
    0804846
  • 财政年份:
    2008
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
CAREER: Rationally Designing, Synthesizing and Self-Assembling Multifunctional, Hybrid Nanostructured Organosilica and Organosilica-Titania Materials for Catalysis
职业:合理设计、合成和自组装多功能、混合纳米结构有机二氧化硅和有机二氧化硅-二氧化钛催化材料
  • 批准号:
    0645348
  • 财政年份:
    2007
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

高选择性PDE5抑制剂的合理设计、结构优化及其抗肺纤维化作用研究
  • 批准号:
    82373732
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
药-靶互作模型导向的β-酮腈杀菌分子合理设计及构效关系研究
  • 批准号:
    22307039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超薄Fe基水滑石纳米片的合理设计与增强肿瘤声催化免疫治疗的机制研究
  • 批准号:
    32301191
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共靶向肿瘤免疫和肿瘤代谢PD-L1/NAMPT双重抑制剂的合理设计及协同免疫活化抗肿瘤活性研究
  • 批准号:
    22377082
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
昆虫几丁质降解靶标导向糖基碳苷抑制剂的合理设计与生物活性研究
  • 批准号:
    32272580
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SusChEM: Rational design of non-precious metal catalysts for a future biorefining industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
  • 批准号:
    1565964
  • 财政年份:
    2016
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Rational Design of Non-precious Metal Catalysts for a Future Biorefining Industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
  • 批准号:
    1566104
  • 财政年份:
    2016
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
SusChEM: Rational Design of High Temperature Water-Gas Shift Catalysts with Non-Toxic Earth-Abundant Elements
SusChEM:采用地球丰富的无毒元素的高温水煤气变换催化剂的合理设计
  • 批准号:
    1511689
  • 财政年份:
    2015
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
SusChEM: Rational Design of Chiral Bipyridine N-Oxides for the Catalytic Propargylation of Aromatic Aldehydes
SusChEM:手性联吡啶氮氧化物催化芳香醛炔丙基化的合理设计
  • 批准号:
    1266022
  • 财政年份:
    2013
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
SusChEM: Rational design of aqueous interfaces of Earth abundant and nontoxic transition metal sulfides for photocatalytic conversion of CO2 to fuels
SusChEM:地球丰富且无毒的过渡金属硫化物的水界面的合理设计,用于二氧化碳光催化转化为燃料
  • 批准号:
    1336845
  • 财政年份:
    2013
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了