SusChEM: Rational Design and Synthesis of Stable Strain- and Defect-Rich Cu/Ceramic Nanocomposites for Efficient CO2 Reduction

SusChEM:合理设计和合成稳定的应变和缺陷丰富的铜/陶瓷纳米复合材料,以有效减少二氧化碳排放

基本信息

  • 批准号:
    1508611
  • 负责人:
  • 金额:
    $ 35.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY: In this project, supported by the Ceramics Program in the Division of Materials Research, Professor Tewodros Asefa is developing novel nanoparticles containing defect- and strain-rich copper nanocrystals sandwiched between two metal oxides. These materials are being used to investigate the stability and catalytic activity of copper nanocrystals for the conversion of carbon dioxide (a greenhouse gas) to methanol (a synthetic fuel and a commodity chemical). While defect- and strain-rich copper nanocrystals have high catalytic activity for this chemical conversion, these very sites are also unfortunately unstable, and thus can easily lose their activity. This problem is overcome by the design of nanomaterials that comprise metal oxide cores and porous metal oxide shells around the strain- and defect-rich copper nanocrystals. This unique structure allows the nanocrystals to retain their catalytically super-active sites, while remaining stable and allowing for the systematic investigation of the interplay between the structures and catalytic properties of copper nanocrystals under high temperature (the condition used for converting carbon dioxide to methanol). State-of-the-art high-resolution neutron scattering techniques at the Center for High Resolution Neutron Scattering (CHRNS) in the National Institute of Standards and Technology (NIST) are being used to decipher the defects and strains on the nanoparticles and any changes that they may undergo during catalysis. The instrumentation at CHRNS allows for various unique characterizations of the structure and dynamics of the materials being developed. TECHNICAL DETAILS: While defect and strained sites on copper nanocrystals have been recently found to have high catalytic activity for high temperature chemical conversion of carbon dioxide to methanol, these very sites are also unfortunately thermodynamically unstable, and thus can easily undergo sintering and deactivation under these conditions. Key features of the research are the designing of core-shell nanoparticles containing stable and highly active, defect- and strain-rich copper nanocrystals sandwiched between metal oxide cores and porous metal oxide shells, and using the resulting nanocatalysts to provide a thorough understanding of the structure-property relationships of copper and other related metallic nanomaterials under high temperature catalytic conditions. The synthesis of such copper nanocrystals is carried out by a method called controlled ligand-assisted etching. The research ultimately uncovers key structural factors that need to be tailored in copper and other related metallic nanomaterials for the efficient catalysis of various reactions, including the conversion of carbon dioxide to methanol, or a greenhouse gas to a synthetic fuel or a commodity chemical. Additionally, the project provides training of a graduate student and three or more undergraduate students, including those from groups historically underrepresented in science and engineering. The students participating in this research gain interdisciplinary, hands-on training with a variety of materials synthetic methods, catalysis, and materials characterization using the infrastructure available at the Rutgers Laboratory for Surface Modification, as well as that available at NIST. Furthermore, the results from the research will be incorporated into graduate course offerings that address materials engineering for sustainable and renewable energy applications.
非技术总结:在这个由材料研究部陶瓷项目支持的项目中,Tewodros Asefa教授正在开发一种新型纳米颗粒,该纳米颗粒含有富含缺陷和应变的铜纳米晶体,夹在两种金属氧化物之间。这些材料正被用于研究铜纳米晶体将二氧化碳(一种温室气体)转化为甲醇(一种合成燃料和商品化学品)的稳定性和催化活性。虽然富含缺陷和应变的铜纳米晶体对这种化学转化具有很高的催化活性,但不幸的是,这些位点也不稳定,因此很容易失去活性。这一问题被纳米材料的设计所克服,这种纳米材料由金属氧化物芯和多孔金属氧化物壳组成,围绕着富含应变和缺陷的铜纳米晶体。这种独特的结构允许纳米晶体保留其催化超活性位点,同时保持稳定,并允许系统地研究高温(将二氧化碳转化为甲醇的条件)下铜纳米晶体的结构和催化性能之间的相互作用。美国国家标准与技术研究院(NIST)的高分辨率中子散射中心(CHRNS)采用了最先进的高分辨率中子散射技术,用于破译纳米颗粒上的缺陷和应变,以及它们在催化过程中可能经历的任何变化。CHRNS的仪器允许对正在开发的材料的结构和动力学进行各种独特的表征。技术细节:虽然铜纳米晶体上的缺陷和应变位点最近被发现对二氧化碳到甲醇的高温化学转化具有很高的催化活性,但不幸的是,这些位点在热力学上也不稳定,因此在这些条件下很容易发生烧结和失活。本研究的主要特点是设计了含有稳定、高活性、富含缺陷和应变的铜纳米晶体的核壳纳米颗粒,夹在金属氧化物核和多孔金属氧化物壳之间,并利用所得到的纳米催化剂,透彻地了解了铜和其他相关金属纳米材料在高温催化条件下的结构-性能关系。这种铜纳米晶体的合成是通过一种称为受控配体辅助蚀刻的方法进行的。这项研究最终揭示了铜和其他相关金属纳米材料中需要定制的关键结构因素,以有效催化各种反应,包括将二氧化碳转化为甲醇,或将温室气体转化为合成燃料或商品化学品。此外,该项目还为一名研究生和三名或更多本科生提供培训,包括那些来自历史上在科学和工程领域代表性不足的群体的学生。参与这项研究的学生将获得跨学科的实践培训,包括各种材料合成方法、催化和材料表征,这些都可以使用罗格斯大学表面改性实验室和NIST提供的基础设施。此外,研究结果将纳入研究生课程,解决可持续和可再生能源应用的材料工程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tewodros Asefa其他文献

Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications
仿生纳米复合材料:从合成到潜在应用
  • DOI:
    10.1557/proc-711-hh5.5.1/aa5.5.1
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tewodros Asefa;N. Coombs;H. Grondey;M. Jaroniec;M. Kruk;M. MacLachlan;G. Ozin
  • 通讯作者:
    G. Ozin
Continuous Henry reaction to a specific product over nanoporous silica-supported amine catalysts on fixed bed reactor
在固定床反应器上通过纳米孔二氧化硅负载的胺催化剂连续亨利反应生成特定产物
  • DOI:
    10.1016/j.apcata.2010.08.056
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Ankush V. Biradar;K. Sharma;Tewodros Asefa
  • 通讯作者:
    Tewodros Asefa
Introduction to Nanocatalysis
纳米催化简介
  • DOI:
    10.1002/9781118609811.ch1
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Polshettiwar;Tewodros Asefa
  • 通讯作者:
    Tewodros Asefa
Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose.
  • DOI:
    10.1002/anie.201107332
  • 发表时间:
    2012-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tewodros Asefa
  • 通讯作者:
    Tewodros Asefa
Synthesis and characterization of methyl- and vinyl-functionalized ordered mesoporous silicas with high organic content
高有机含量甲基和乙烯基功能化有序介孔二氧化硅的合成与表征

Tewodros Asefa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tewodros Asefa', 18)}}的其他基金

Structure-Property Studies of Novel Multifunctionally-Doped Core-Shell-Shell Nanomaterials for Improving Efficiency and Stability in Decontamination of Environmental Pollutants
新型多功能掺杂核-壳-壳纳米材料的结构-性能研究,用于提高环境污染物净化效率和稳定性
  • 批准号:
    1134289
  • 财政年份:
    2011
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
CAREER: Rationally Designing, Synthesizing and Self-Assembling Multifunctional, Hybrid Nanostructured Organosilica and Organosilica-Titania Materials for Catalysis
职业:合理设计、合成和自组装多功能、混合纳米结构有机二氧化硅和有机二氧化硅-二氧化钛催化材料
  • 批准号:
    1004218
  • 财政年份:
    2009
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
Controlled Synthesis of Mesoporous Silicon Oxynitride Ceramics by Nitridization of Mesoporous Organosilicas
介孔有机硅氮化控制合成介孔氮氧化硅陶瓷
  • 批准号:
    0968937
  • 财政年份:
    2009
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
Controlled Synthesis of Mesoporous Silicon Oxynitride Ceramics by Nitridization of Mesoporous Organosilicas
介孔有机硅氮化控制合成介孔氮氧化硅陶瓷
  • 批准号:
    0804846
  • 财政年份:
    2008
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
CAREER: Rationally Designing, Synthesizing and Self-Assembling Multifunctional, Hybrid Nanostructured Organosilica and Organosilica-Titania Materials for Catalysis
职业:合理设计、合成和自组装多功能、混合纳米结构有机二氧化硅和有机二氧化硅-二氧化钛催化材料
  • 批准号:
    0645348
  • 财政年份:
    2007
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
  • 批准号:
    41804098
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
  • 批准号:
    61072105
  • 批准年份:
    2010
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Fellowship
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
  • 批准号:
    2323989
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
  • 批准号:
    2243665
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
  • 批准号:
    23K04688
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rational Design of Heterogeneous Catalysts for Sustainable Applications
可持续应用多相催化剂的合理设计
  • 批准号:
    2900533
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Studentship
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
  • 批准号:
    2312000
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Rational Design and Engineering of Composite Electrolytes for All-solid-state Li-S Batteries
RII Track-4:NSF:全固态锂硫电池复合电解质的合理设计与工程
  • 批准号:
    2229305
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
  • 批准号:
    2243667
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Rational design of array-based nanozyme sensors
基于阵列的纳米酶传感器的合理设计
  • 批准号:
    DP230101650
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了