Using Measurement-based Approach to Model, Predict and Control Large-scale Power Grids

使用基于测量的方法对大型电网进行建模、预测和控制

基本信息

  • 批准号:
    1509624
  • 负责人:
  • 金额:
    $ 28.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The electric power grid is the backbone of all modern societies. With increasing renewable power generation, it becomes a challenge to operate the already aging U.S. power grids efficiently and reliably. The 2003 U.S. Northeast/Quebec and 2012 India blackouts have demonstrated the catastrophic consequences of a massive blackout. However, blackouts such as these could be prevented if the power system could be monitored and controlled more accurately and timely. The transformative research proposed in this project could potentially make full usage of the high-resolution measurement data available in the power grids and develop a completely new measurement-based approach to steer the power grids away from large blackouts early on. The proposed project is also coupled with a strong educational component to engage students from underrepresented groups and a broad dissemination of research findings.Based on over ten years of observation of the three major North American grids and major grids worldwide via synchrophasor measurement, strong linearity of large-scale power systems has been observed. This observation can also be verified by the interconnection-level dynamic simulations. No longer constricted by the habitual belief that the electric power grid is a nonlinear network that should be always represented by a high-order circuit-based model, this project proposes an entirely new measurement-based method to model, predict and control a large-scale interconnected power grid, especially in regard to small-signal dynamic behaviors. This project will develop measurement-based power system analysis and control applications that take full advantage of this underutilized system linearity. Specifically, the proposed linearity study will characterize the strong linearity of large-scale power grids, which has been understandably neglected by the research community, as the first step. The study will analyze the source of large-scale power grid linearity and re-examine the conventional definition of small signal. Secondly, this project will construct a linear-structured model using measurements to predict a large-scale power grid?s dynamic behavior following a small-signal disturbance. Predicting a power grid's behavior is very important for large-scale interconnected power systems and this predictive capability will provide system operators with true look-ahead capabilities. Thirdly, another novel application of a large-scale power grid?s linearity involves representing the less-interested areas of a large-scale circuit-based model with measurement-based equivalent models. This hybrid circuit and measurement model will easily achieve several orders of magnitudes higher simulation speed while maintaining acceptable accuracy. Finally and most importantly, compared to the circuit-based model that cannot be easily updated frequently, this measurement-derived model could be updated using real-time streaming measurements and keep track of the continuous change of power grids. For example, a measurement based oscillation damping controller could be updated in real time and would be much more accurate and robust, improving the stability of an interconnected power grid. With more high-resolution measurement data available, the proposed research will have a direct and immediate impact on how the U.S. interconnected power system should be modeled, analyzed, and controlled; and this advanced approach will contribute to the energy security and efficiency of the U.S. electric power grid infrastructure.
电网是所有现代社会的支柱。随着可再生能源发电量的增加,如何高效、可靠地运行已经老化的美国电网成为一项挑战。2003年美国东北部/魁北克和2012年印度的停电已经证明了大规模停电的灾难性后果。然而,如果能更准确、更及时地监测和控制电力系统,这样的停电是可以避免的。该项目提出的变革性研究可能会充分利用电网中可用的高分辨率测量数据,并开发出一种全新的基于测量的方法,以引导电网尽早摆脱大规模停电。拟议的项目还结合了强大的教育组成部分,以吸引来自代表性不足群体的学生,并广泛传播研究成果。通过十多年来对北美三大电网和世界主要电网的同步相量观测,发现了大型电力系统的强线性。这一观察结果也可以通过互联级动态模拟得到验证。不再被习惯性地认为电网是一个非线性网络,应该总是用高阶电路模型来表示,该项目提出了一种全新的基于测量的方法来建模、预测和控制大规模互联电网,特别是在小信号动态行为方面。该项目将开发基于测量的电力系统分析和控制应用,充分利用这种未充分利用的系统线性度。具体来说,提出的线性研究将表征大型电网的强线性,这是可以理解的,被研究界忽视了,作为第一步。该研究将分析大规模电网线性的来源,并重新审视小信号的传统定义。其次,本项目将构建一个线性结构模型,利用测量来预测一个大规模的电网。S在小信号扰动后的动态行为。预测电网的行为对于大型互联电力系统非常重要,这种预测能力将为系统运营商提供真正的前瞻性能力。第三,大规模电网的另一个新应用?S线性涉及用基于测量的等效模型表示大规模电路模型中不太感兴趣的区域。这种混合电路和测量模型可以很容易地实现几个数量级的高仿真速度,同时保持可接受的精度。最后也是最重要的一点是,与基于电路的模型难以频繁更新相比,该测量衍生模型可以使用实时流测量进行更新,并跟踪电网的连续变化。例如,基于测量的振荡阻尼控制器可以实时更新,并且更加准确和鲁棒,从而提高互联电网的稳定性。有了更多高分辨率的测量数据,拟议的研究将对如何对美国互联电力系统进行建模、分析和控制产生直接和直接的影响;这种先进的方法将有助于美国电网基础设施的能源安全和效率。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comprehensive Method to Mitigate Forced Oscillations in Large Interconnected Power Grids
缓解大型互连电网受迫振荡的综合方法
  • DOI:
    10.1109/access.2021.3056123
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhu, Lin;Yu, Wenpeng;Jiang, Zhihao;Zhang, Chengwen;Zhao, Yi;Dong, Jiaojiao;Wang, Weikang;Liu, Yilu;Farantatos, Evangelos;Ramasubramanian, Deepak
  • 通讯作者:
    Ramasubramanian, Deepak
Impact of Wide-Area Oscillation Damping Control using Measurement-Driven Approach on System Separation - Saudi Grid Case Study
  • DOI:
    10.1109/td39804.2020.9299887
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ibrahim Altarjami;Lin Zhu;D. Lu;Xianda Deng;Yilu Liu;E. Farantatos;D. Ramasubramanian;Mahendra Patel;Muhammad Ijaz;Ahmed H. Al-Mubarak;Salem Bashraheel
  • 通讯作者:
    Ibrahim Altarjami;Lin Zhu;D. Lu;Xianda Deng;Yilu Liu;E. Farantatos;D. Ramasubramanian;Mahendra Patel;Muhammad Ijaz;Ahmed H. Al-Mubarak;Salem Bashraheel
Dynamic Model Reduction for Large-Scale Power Systems Using Wide-Area Measurements
使用广域测量减少大型电力系统的动态模型
  • DOI:
    10.1109/access.2020.2992624
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tong, Ning;Jiang, Zhihao;Zhu, Lin;Liu, Yilu
  • 通讯作者:
    Liu, Yilu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yilu Liu其他文献

Internet based frequency monitoring network (FNET)
基于互联网的频率监测网络(FNET)
Identification of Lightning Strike on 500 kV Transmission Line Based on the Time-Domain Parameters of a Travelling Wave
基于行波时域参数的500 kV输电线路雷击识别
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yong Qian;Xiuche Jiang;Zhu lin;Yilu Liu
  • 通讯作者:
    Yilu Liu
Primary Frequency Response Adequacy Study on the U.S. Eastern Interconnection Under High-Wind Penetration Conditions
高风穿透条件下美国东部互联的初级频率响应充分性研究
Utilization of optical sensors for phasor measurement units
使用光学传感器作为相量测量单元
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenxuan Yao;D. N. Wells;D. King;A. Herron;T. King;Yilu Liu
  • 通讯作者:
    Yilu Liu
Appropriate Evaluation of Primary Frequency Response and Its Applications
一次频率响应的正确评估及其应用

Yilu Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yilu Liu', 18)}}的其他基金

AI-Assisted Algorithms for Automatic AC Power Flow Model Creation based on DC Dispatch
基于直流调度的人工智能辅助自动交流潮流模型创建算法
  • 批准号:
    2243204
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
PFI-RP: Increasing the stability of large-scale electric power systems through an adaptive measurement-driven controller prototype.
PFI-RP:通过自适应测量驱动控制器原型提高大型电力系统的稳定性。
  • 批准号:
    1941101
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
MRI: Development of Pulsar-based Power Grid Timing Instrumentation and Technology
MRI:基于脉冲星的电网授时仪器和技术的发展
  • 批准号:
    1920025
  • 财政年份:
    2019
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
CPS: Small: Data-driven Real-time Data Authentication in Wide-Area Energy Infrastructure Sensor Networks
CPS:小型:广域能源基础设施传感器网络中数据驱动的实时数据身份验证
  • 批准号:
    1931975
  • 财政年份:
    2019
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Intelligent Mitigation of Low-Frequency Oscillations in Smart Grid Using Real-time Learning
EAGER:实时:利用实时学习智能缓解智能电网中的低频振荡
  • 批准号:
    1839684
  • 财政年份:
    2018
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Multiple FACTS Devices Coordination Using Synchronized Wide Area Measurements (Collaborative Proposal with UMR)
使用同步广域测量协调多个 FACTS 设备(与 UMR 的合作提案)
  • 批准号:
    0701744
  • 财政年份:
    2007
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Study of Global Power System Dynamic Behavior Based on Wide-Area Frequency Measurements
基于广域频率测量的全球电力系统动态行为研究
  • 批准号:
    0523315
  • 财政年份:
    2005
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
MRI: Development of Integrative Instrumentation for A Nation-Wide Power System Frequency Dynamics Monitoring Network
MRI:全国电力系统频率动态监测网络综合仪器的开发
  • 批准号:
    0215731
  • 财政年份:
    2002
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Integration of Energy Storage Systems and Modern Flexible AC Transmission Devices
储能系统与现代柔性交流输电装置的集成
  • 批准号:
    9988868
  • 财政年份:
    2000
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
GOALI-Technologies Joint Research Project
GOALI-Technologies联合研究项目
  • 批准号:
    9801139
  • 财政年份:
    1998
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of a high-rate ultrasonic windspeed measurement method based on a generalization of time inverse method and wave number estimation using EKF
开发基于时间反演方法和 EKF 波数估计推广的高速超声波风速测量方法
  • 批准号:
    23K03880
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Sources and Fluxes of CO2 during the 2023 Fagradsfjall Eruption using drone- and ground- based sampling and measurement techniques
RAPID:使用无人机和地面采样和测量技术研究 2023 年 Fagradsfjall 喷发期间二氧化碳的来源和通量
  • 批准号:
    2336217
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Three-Dimensional Diffusion Measurement near the Fluid-Solid Interfacial Boundary based on an Advanced Particle Tracking using Total Internal Reflection
基于使用全内反射的高级粒子跟踪的流固界面边界附近的三维扩散测量
  • 批准号:
    23K03664
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
  • 批准号:
    23H01420
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pavement Maintenance Management Strategies for Emergency Medical Services Using AI-based Road Surface Measurement Technology
使用基于人工智能的路面测量技术的紧急医疗服务路面维护管理策略
  • 批准号:
    22K04360
  • 财政年份:
    2022
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Continuous estimation of pulmonary artery pressure fluctuations based on non-invasive measurement using microwave radar
基于微波雷达无创测量的肺动脉压力波动连续估计
  • 批准号:
    22K12917
  • 财政年份:
    2022
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory-based Measurement of Varieties of Power Using a Novel Semi-supervised IRT Model
使用新型半监督 IRT 模型对各种功率进行基于理论的测量
  • 批准号:
    2148904
  • 财政年份:
    2022
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Standard Grant
Development of spectral radiance measurement method using LED-based standard source without Planck's law
开发使用基于 LED 的标准光源(无需普朗克定律)的光谱辐射亮度测量方法
  • 批准号:
    21K04898
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of compact super-resolution microscope using three-dimensional measurement technology based on speckle interferometry
基于散斑干涉测量技术的紧凑型超分辨显微镜的研制
  • 批准号:
    20H02165
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evaluation of the organic matter accumulation effect based on the measurement of water and gas movement inside and outside the artificial macropores using the shaft tillage method
竖耕法测量人工大孔隙内外水气运动评价有机质富集效果
  • 批准号:
    20K15623
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了