AI-Assisted Algorithms for Automatic AC Power Flow Model Creation based on DC Dispatch
基于直流调度的人工智能辅助自动交流潮流模型创建算法
基本信息
- 批准号:2243204
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop user-friendly algorithms that automatically create realistic snapshots of real U.S. electric grids for many futuristic operating scenarios with variable proportions of conventional and renewable energy generators. This project will bring transformative change to the process of risk identification and mitigation of electric grids by significantly reducing model development time and increasing the operating conditions that can be considered. The intellectual merits of the project include: 1) deployment of a multi-stage approach that combines physics-based principles and artificial intelligence-based methods to convert dispatch scenarios of grid generators to full power system cases, 2) development of a data-driven problem discovery algorithm to assist human intervention. The broader impacts of the project include: a) facilitation of high-renewable energy power grids towards the achievement of national clean energy goals, b) involvement of undergraduate and graduate students from underrepresented groups, c) provision of opportunities, including lab tours and presentations, for K-12 students to learn about the potential use of artificial intelligence in real power grids.Higher penetration of renewable energy resources has led to increased variations in daily generation mix, thus, the AC power flow (ACPF) solution of a DC power flow (DCPF) dispatch case is no longer a good initialization to obtain the ACPF solution of the next operating condition. Currently, there are neither reliable algorithms nor vendor products to automatically convert DCPF dispatch cases to converged ACPF cases, thus, conversion requires manual analysis and tuning. This project aims to solve this problem using several innovations: 1) a physics-guided machine learning initializer (PMLI) to replace flat start initialization in Newton Raphson solution method for ACPF, 2) a transfer learning process to reuse developed PMLI on multiple power systems, and 3) a hot-start incremental algorithm with automatic reactive power compensation selection. This work will provide an important step to make simulation of the power grid functions in real time a reality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF项目旨在开发用户友好的算法,自动创建真实的美国电网的真实快照,用于许多未来的操作场景,其中传统和可再生能源发电机的比例可变。该项目将通过显著减少模型开发时间和增加可考虑的运行条件,为电网风险识别和缓解过程带来变革性变化。该项目的智力优势包括:1)部署一个多阶段的方法,结合基于物理的原则和基于人工智能的方法,将电网发电机的调度场景转换为完整的电力系统案例,2)开发一个数据驱动的问题发现算法,以帮助人类干预。该项目的广泛影响包括:a)促进高度可再生能源电网的建设,以实现国家清洁能源目标,B)让代表性不足群体的本科生和研究生参与,c)提供机会,包括实验室图尔斯参观和演示,对于K-12名学生了解人工智能在真实的电网中的潜在用途。可再生能源资源的更高渗透率导致在日常发电组合的变化,因此,交流潮流(ACPF)解决方案的直流潮流(DCPF)调度情况下,不再是一个很好的初始化,以获得下一个操作条件的ACPF解决方案。目前,既没有可靠的算法,也没有供应商的产品来自动将DCPF调度案例转换为融合的ACPF案例,因此,转换需要手动分析和调整。该项目旨在使用几项创新来解决这个问题:1)物理引导的机器学习初始化器(PMLI),以取代ACPF的牛顿-拉夫森求解方法中的平坦启动初始化,2)迁移学习过程,以在多个电力系统上重用开发的PMLI,以及3)具有自动无功补偿选择的热启动增量算法。这项工作将为真实的电网功能的模拟提供重要的一步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Machine Learning Initializer for Newton-Raphson AC Power Flow Convergence
牛顿-拉夫森交流潮流收敛的机器学习初始化器
- DOI:10.1109/tpec60005.2024.10472261
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Okhuegbe, Samuel N;Ademola, Adedasola A;Liu, Yilu
- 通讯作者:Liu, Yilu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yilu Liu其他文献
Internet based frequency monitoring network (FNET)
基于互联网的频率监测网络(FNET)
- DOI:
10.1109/pesw.2001.917238 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
B. Qiu;Ling Chen;Virgilio A. Centeno;Xuzhu Dong;Yilu Liu - 通讯作者:
Yilu Liu
Identification of Lightning Strike on 500 kV Transmission Line Based on the Time-Domain Parameters of a Travelling Wave
基于行波时域参数的500 kV输电线路雷击识别
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Yong Qian;Xiuche Jiang;Zhu lin;Yilu Liu - 通讯作者:
Yilu Liu
Primary Frequency Response Adequacy Study on the U.S. Eastern Interconnection Under High-Wind Penetration Conditions
高风穿透条件下美国东部互联的初级频率响应充分性研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gefei Kou;Micah J. Till;T. Bilke;S. Hadley;Yilu Liu;T. King - 通讯作者:
T. King
Utilization of optical sensors for phasor measurement units
使用光学传感器作为相量测量单元
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wenxuan Yao;D. N. Wells;D. King;A. Herron;T. King;Yilu Liu - 通讯作者:
Yilu Liu
Appropriate Evaluation of Primary Frequency Response and Its Applications
一次频率响应的正确评估及其应用
- DOI:
10.1109/gtd49768.2023.00049 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chengwen Zhang;Hongyu Li;Zhihao Jiang;Weikang Wang;Chujie Zeng;Chang Chen;H. Yin;Yilu Liu;Mark Baldwin - 通讯作者:
Mark Baldwin
Yilu Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yilu Liu', 18)}}的其他基金
PFI-RP: Increasing the stability of large-scale electric power systems through an adaptive measurement-driven controller prototype.
PFI-RP:通过自适应测量驱动控制器原型提高大型电力系统的稳定性。
- 批准号:
1941101 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Development of Pulsar-based Power Grid Timing Instrumentation and Technology
MRI:基于脉冲星的电网授时仪器和技术的发展
- 批准号:
1920025 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Small: Data-driven Real-time Data Authentication in Wide-Area Energy Infrastructure Sensor Networks
CPS:小型:广域能源基础设施传感器网络中数据驱动的实时数据身份验证
- 批准号:
1931975 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER: Real-Time: Intelligent Mitigation of Low-Frequency Oscillations in Smart Grid Using Real-time Learning
EAGER:实时:利用实时学习智能缓解智能电网中的低频振荡
- 批准号:
1839684 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Using Measurement-based Approach to Model, Predict and Control Large-scale Power Grids
使用基于测量的方法对大型电网进行建模、预测和控制
- 批准号:
1509624 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiple FACTS Devices Coordination Using Synchronized Wide Area Measurements (Collaborative Proposal with UMR)
使用同步广域测量协调多个 FACTS 设备(与 UMR 的合作提案)
- 批准号:
0701744 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Study of Global Power System Dynamic Behavior Based on Wide-Area Frequency Measurements
基于广域频率测量的全球电力系统动态行为研究
- 批准号:
0523315 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Development of Integrative Instrumentation for A Nation-Wide Power System Frequency Dynamics Monitoring Network
MRI:全国电力系统频率动态监测网络综合仪器的开发
- 批准号:
0215731 - 财政年份:2002
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Integration of Energy Storage Systems and Modern Flexible AC Transmission Devices
储能系统与现代柔性交流输电装置的集成
- 批准号:
9988868 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GOALI-Technologies Joint Research Project
GOALI-Technologies联合研究项目
- 批准号:
9801139 - 财政年份:1998
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Nonsmooth Control Systems for Societal Networks with Data-Assisted Feedback Loops: Theory and Algorithms
职业:具有数据辅助反馈环的社会网络的非平滑控制系统:理论和算法
- 批准号:
2305756 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
- 批准号:
567101-2021 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Alliance Grants
CAREER: Nonsmooth Control Systems for Societal Networks with Data-Assisted Feedback Loops: Theory and Algorithms
职业:具有数据辅助反馈环的社会网络的非平滑控制系统:理论和算法
- 批准号:
2144076 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
- 批准号:
567101-2021 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Alliance Grants
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
- 批准号:
9982955 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Development of Machine Learning Algorithms to Assess and Train Vesico-Urethral Anastomosis during Robot Assisted Radical Prostatectomy
开发机器学习算法来评估和训练机器人辅助根治性前列腺切除术期间的膀胱尿道吻合术
- 批准号:
9767765 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Development of algorithms combining molecular dynamics with time-dependent quantum statistical mechanics for environment-assisted electronic transport through biomolecules
开发将分子动力学与时间相关的量子统计力学相结合的算法,用于通过生物分子的环境辅助电子传输
- 批准号:
1566074 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Synergy: Integrated Sensing and Control Algorithms for Computer-Assisted Training
CPS:Synergy:用于计算机辅助训练的集成传感和控制算法
- 批准号:
1329738 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Contour-Assisted Visual Inference: Systems, Algorithms, and Applications
RI:小型:协作研究:轮廓辅助视觉推理:系统、算法和应用
- 批准号:
1218177 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Contour-Assisted Visual Inference: Systems, Algorithms, and Applications
RI:小型:协作研究:轮廓辅助视觉推理:系统、算法和应用
- 批准号:
1218156 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant