GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
基本信息
- 批准号:1509762
- 负责人:
- 金额:$ 30.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Internet of Things (IoT), also referred to as the Industrial Internet, is projected to be modern society's third great revolution following the Industrial Revolution and the Communications Revolution. A great proportion of the communications performed in the IoT will be between devices, in so-called machine-to-machine (M2M) systems, and in an increasingly automated manner. The environments in which IoT devices will operate will often be more complex, cluttered and challenging for wireless communications than either today's ubiquitous mobile communications or wireless data networks. This research addresses a critical component of the IoT wireless communications link, namely the antenna systems for these small, inexpensive devices. New antenna designs are needed, along with new methods for low-cost digital manufacturing and for testing the devices under realistic operating conditions. The research findings of this project have potential to positively impact the robustness of not only M2M systems but also systems utilized in dynamic environments such vehicle-to-vehicle, first-responder and military field operations. Furthermore, the underlying knowledge could influence the future designs of medical devices, on-body sensor systems, robotic systems, un-manned ground and air vehicles and similar applications where customization, form factor, production volume or other considerations make direct digital manufacturing (DDM) an attractive option. Graduate students from the University of Vermont and the University of South Florida will collaborate with the industry participants from Harris Corporation. The investigators will also work closely with STEM programs targeting high school students, in particular those students from underrepresented and disadvantaged populations, to develop activities that provide insights on the foundations that make wireless communications possible. The proposed research will lead to techniques and technology that enable wireless devices for Internet of Things (IoT) applications operating at 2.45, 5 and 60 GHz to determine and adapt to the channel impairments using new antenna system designs. Advanced manufacturing and integration approaches will be studied with the goal of reducing the size and cost of these devices and systems. The intellectual merit lies in the fusion of ideas from propagation modeling, antenna design and direct digital manufacturing (DDM). Previous work by the investigators, who have a long and productive history of collaboration, has contributed new understanding of channel conditions for highly cluttered environments, 3D antenna designs, and the use of DDM for microwave circuit and antenna fabrication. The work will leverage this expertise in the investigation of new channel models and the resulting theory that will inform the study of next generation, adaptive antenna systems. A new approach to quantifying antenna system performance based on collecting and analyzing antenna responses to a wide range of channel conditions is the basis for the proposed propagation studies. The orientation, spacing and reconfiguration of antenna elements in a multi-polarization system will be studied using a statistical characterization method. Advanced DDM processes will be investigated using a unique 3D printer that combines plastic extrusion, paste micro-dispensing and laser processing in a single tool. The new processes will provide the ability to realize 3D structural electronics that comprise package-integrated antenna systems that include ferroelectric tuning networks. The realization of electronically-tunable DDM devices requires a new process to merge a technology with length scales on the order of 10's of microns (DDM) with one having length scales on the order of microns (integrated circuits). The eventual goal of demonstrating, in collaboration with GOALI partner Harris Corp., high performance mm-wave (60 GHz) antenna systems of this nature necessitates tight control over feature sizes and the quality and surface features of printed conductors; the use of pulsed laser processing will be studied as a means to address these challenges.
物联网(IoT),也被称为产业互联网,被预测为继产业革命和通信革命之后现代社会的第三次伟大革命。在物联网中执行的大部分通信将在设备之间进行,即所谓的机器对机器(M2M)系统,并且以越来越自动化的方式进行。与当今无处不在的移动通信或无线数据网络相比,物联网设备运行的环境往往更加复杂、混乱和具有挑战性。本研究解决了物联网无线通信链路的一个关键组成部分,即用于这些小型廉价设备的天线系统。需要新的天线设计,以及低成本数字制造和在实际操作条件下测试设备的新方法。该项目的研究成果不仅有可能对M2M系统的鲁棒性产生积极影响,而且还可能对动态环境中使用的系统产生积极影响,例如车对车、第一响应者和军事野战。此外,潜在的知识可能会影响医疗设备、身体传感器系统、机器人系统、无人驾驶地面和空中飞行器以及类似应用的未来设计,在这些应用中,定制、形状因素、产量或其他考虑因素使直接数字制造(DDM)成为一个有吸引力的选择。佛蒙特大学和南佛罗里达大学的研究生将与哈里斯公司的行业参与者合作。研究人员还将与针对高中生的STEM项目密切合作,特别是那些来自代表性不足和弱势群体的学生,以开展活动,为使无线通信成为可能的基础提供见解。拟议的研究将导致技术和技术,使工作在2.45、5和60 GHz的物联网(IoT)应用的无线设备能够使用新的天线系统设计来确定和适应信道损伤。先进的制造和集成方法将以减少这些设备和系统的尺寸和成本为目标进行研究。其智力优势在于融合了传播建模、天线设计和直接数字制造(DDM)的思想。研究人员之前的工作具有长期和富有成效的合作历史,对高度混乱环境的信道条件,3D天线设计以及使用DDM进行微波电路和天线制造做出了新的理解。这项工作将利用这种专业知识来研究新的信道模型和由此产生的理论,这些理论将为下一代自适应天线系统的研究提供信息。一种基于收集和分析天线在各种信道条件下的响应来量化天线系统性能的新方法是所提出的传播研究的基础。利用统计表征方法研究多极化系统中天线单元的方位、间距和重构。先进的DDM工艺将使用独特的3D打印机进行研究,该打印机将塑料挤出,粘贴微点胶和激光加工结合在一个工具中。新工艺将提供实现3D结构电子器件的能力,包括包含铁电调谐网络的封装集成天线系统。电子可调谐DDM器件的实现需要一种新的工艺,将长度尺度为10微米(DDM)的技术与长度尺度为微米(集成电路)的技术相结合。与GOALI合作伙伴Harris公司合作,演示高性能毫米波(60 GHz)天线系统的最终目标需要严格控制特征尺寸、印刷导体的质量和表面特征;使用脉冲激光加工将被研究作为一种手段来解决这些挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Weller其他文献
Structure–activity relationship studies and sleep-promoting activity of novel 1-chloro-5,6,7,8-tetrahydroimidazo[1,5-<em>a</em>]pyrazine derivatives as dual orexin receptor antagonists. Part 2
- DOI:
10.1016/j.bmcl.2013.04.071 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:
- 作者:
Thierry Sifferlen;Ralf Koberstein;Emmanuelle Cottreel;Amandine Boller;Thomas Weller;John Gatfield;Catherine Brisbare-Roch;Francois Jenck;Christoph Boss - 通讯作者:
Christoph Boss
Theatrum Praecedentiae : zeremonieller Rang und gesellschaftliche Ordnung in der frühneuzeitlichen Stadt : Leipzig 1500-1800
实践剧场:早期城市的泽蒙尼尔·兰格和社会秩序:莱比锡 1500-1800 年
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Thomas Weller - 通讯作者:
Thomas Weller
Herstellung von 1, 3-Diketonen und von Nitro-diketonen durch (1:1)-Acylierungen von Lithiumenolaten mit Acylchloriden
1, 3-二酮和硝基二酮 (1:1)-酰氯锂的酰化
- DOI:
10.1002/hlca.19810640313 - 发表时间:
1981 - 期刊:
- 影响因子:1.8
- 作者:
D. Seebach;Thomas Weller;Gerd Protschuk;Albert K. Beck;Marvin S. Hoekstra - 通讯作者:
Marvin S. Hoekstra
Orally active fibrinogen receptor antagonists. 2. Amidoximes as prodrugs of amidines.
口服活性纤维蛋白原受体拮抗剂。
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:7.3
- 作者:
Thomas Weller;L. Alig;Maureen Beresini;Brent Blackburn;Stuart Bunting;P. Hadváry;Marianne Hürzeler Müller;Dietmar Knopp;Bernard Levet;M. Terry Lipari;Nishit B. Modi;Marcel Müller;C. Refino;Monique Schmitt;Peter Schönholzer;Sabine Weiss;Beat Steiner - 通讯作者:
Beat Steiner
Thomas Weller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Weller', 18)}}的其他基金
Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
- 批准号:
2329206 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Continuing Grant
Travel: 2023 International Microwave Symposium Educational Initiatives for Project Connect
旅行:2023 年国际微波研讨会 Project Connect 教育举措
- 批准号:
2312225 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI: Mm-Wave Reconfigurable Additive Manufactured Packaging Systems (RAMPS) using Pulsed Picosecond Laser Processing
GOALI:使用脉冲皮秒激光加工的毫米波可重构增材制造包装系统 (RAMPS)
- 批准号:
1912679 - 财政年份:2018
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
- 批准号:
1853174 - 财政年份:2018
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI: Mm-Wave Reconfigurable Additive Manufactured Packaging Systems (RAMPS) using Pulsed Picosecond Laser Processing
GOALI:使用脉冲皮秒激光加工的毫米波可重构增材制造包装系统 (RAMPS)
- 批准号:
1711790 - 财政年份:2017
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
2014 IEEE International Microwave Symposium Project Connect Support. To Be Held in Tampa, FL June 1-6, 2014.
2014 年 IEEE 国际微波研讨会项目 Connect 支持。
- 批准号:
1362027 - 财政年份:2014
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI Collaborative Proposal: 3D RF Microsystems using Direct Digital Manufacturing Technology
GOALI 协作提案:使用直接数字制造技术的 3D RF 微系统
- 批准号:
1232183 - 财政年份:2012
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI/COLLABORATIVE RESEARCH - Flexible Ferroelectric-Based Antenna Arrays For Conformal Radiometric Imaging
GOALI/协作研究 - 用于共形辐射成像的柔性铁电天线阵列
- 批准号:
0901779 - 财政年份:2009
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Collaborative Project: Multi-University Systems Education (MUSE) - A Model for Undergraduate Learning of Complex-Engineered Systems
合作项目:多大学系统教育 (MUSE) - 复杂工程系统本科学习模型
- 批准号:
0716317 - 财政年份:2007
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI: Functional Magnetic Polymer Nanocomposite Films for Tunable RD Device Applications
GOALI:用于可调谐 RD 设备应用的功能磁性聚合物纳米复合薄膜
- 批准号:
0728073 - 财政年份:2007
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant