GOALI: Mm-Wave Reconfigurable Additive Manufactured Packaging Systems (RAMPS) using Pulsed Picosecond Laser Processing

GOALI:使用脉冲皮秒激光加工的毫米波可重构增材制造包装系统 (RAMPS)

基本信息

  • 批准号:
    1711790
  • 负责人:
  • 金额:
    $ 35.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

The aim of this project is to investigate packaging technologies for high frequency microelectronic circuits that will provide critical performance enhancements for next generation wireless systems. The approach is based on the use of low cost additive manufacturing or 3D printing processes, and will require advances in areas such as minimum feature size, reconfigurable electronic and mechanical structures, and millimeter-wave frequency circuit design. The proposed approach of integrating the functionality needed to dynamically reconfigure a mm-wave system directly into the 3D-printed packaging is a new concept, since current packaging technologies predominantly serve only to provide environmental protection with no electronic purpose. The new structural electronic packaging concept could therefore significantly disrupt the microelectronics packaging industry, as the functional packaging would provide the ability to perform actions such as changing operating frequencies and steering antenna beams in real-time. The technology could impact important emerging applications such as 5G wireless, the internet of things and autonomous and connected vehicles. It could also expand into fields such as wearable electronics, bio-electronic devices, and artificial organs. In addition to training graduate students the project will impact K-12 education by offering training opportunities to high school teachers and students. Undergraduate students will also be involved through Research Experience for Undergraduates projects and multi-disciplinary Senior Capstone Design projects that are outlined by the industry partner. The principal investigators will continue to emphasize the participation of students from diverse backgrounds and underrepresented groups in engineering, and include a focus on the attainment of global perspectives and leadership skills as part of their training.The technical goal of the project is to advance the state of the art in millimeter wave packaging technology by demonstrating new approaches for direct integration of low temperature on-package and on-chip structural electronics. The aim is to study concepts for reconfigurable packaging using dynamic structures that are fabricated using additive manufacturing. Specifically, the research will involve a hybrid, direct print additive manufacturing strategy that combines fused filament fabrication and micro-dispensing to form the package foundation in a conformal manner directly onto the microelectronic device or component. The critical electronic and mechanical features will be defined using pulsed picosecond laser machining with a targeted minimum feature size of 3-5 microns. Performance goals include variable reactance devices with greater than 5:1 tuning in the upper Ka-band and interconnects with less than 0.7 dB/cm loss in the V-band. The proposed work has potential to make significant contributions in the area of functional electronic packaging, which may prove to be one of the most economically and technically important applications of direct print additive manufacturing. To date, no additive manufactured tunable devices have been demonstrated at millimeter wave frequencies. Furthermore, there are no existing packaging technologies that can combine the advantages of low temperature processing, conformal integration and dynamic real-time reconfigurability. Finally, since the proposed approach is generic in nature it will be broadly applicable to a wide range of microwave/mm-wave communications and sensing systems. The project's industry partner brings expertise in microwave packaging and manufacturing and will play a critical role in steering the investigations to maximize future commercial impact.
该项目的目的是研究针对高频微电子电路的包装技术,这些电路将为下一代无线系统提供关键的性能增强。该方法基于使用低成本增材制造或3D打印过程,并且需要在最小功能大小,可重新配置的电子和机械结构以及毫米波频率电路设计等领域取得进展。 整合将MM波系统直接重新配置为3D打印包装所需的功能的建议方法是一个新概念,因为当前的包装技术主要用于提供没有电子目的的环境保护。 因此,新的结构电子包装概念可能会严重破坏微电子包装行业,因为功能包装将提供执行诸如更改操作频率和实时转向天线束等动作的能力。 该技术可能会影响重要的新兴应用程序,例如5G无线,物联网以及自动驾驶和互联车辆。 它还可以扩展到可穿戴电子,生物电子设备和人造器官等领域。除培训研究生外,该项目还将通过为高中教师和学生提供培训机会来影响K-12教育。 本科生还将通过研究本科项目和由行业合作伙伴概述的多学科项目和多学科的高级顶峰设计项目参与其中。 The principal investigators will continue to emphasize the participation of students from diverse backgrounds and underrepresented groups in engineering, and include a focus on the attainment of global perspectives and leadership skills as part of their training.The technical goal of the project is to advance the state of the art in millimeter wave packaging technology by demonstrating new approaches for direct integration of low temperature on-package and on-chip structural electronics.目的是使用使用增材制造制造的动态结构来研究可重构包装的概念。具体而言,该研究将涉及一种混合,直接打印的添加剂制造策略,该策略将融合的灯丝制造和微分分解结合在一起,以共形的方式形成包装基础,直接直接在微电子设备或组件上。临界电子和机械特征将使用脉冲皮秒激光加工定义,目标最小特征大小为3-5微米。 性能目标包括在KA波段中大于5:1的可变电抗设备,并且V波段中的互连小于0.7 dB/cm。 拟议的工作有可能在功能性电子包装领域做出重大贡献,这可能被证明是直接印刷添加剂制造的经济和技术上最重要的应用之一。迄今为止,在毫米波频率上尚未证明添加剂制造的可调设备。此外,没有现有的包装技术可以结合低温处理,保形集成和动态实时重构性的优势。 最后,由于所提出的方法本质上是通用的,因此通常适用于广泛的微波/mm波传感系统。该项目的行业合作伙伴为微波包装和制造业带来了专业知识,并将在指导调查中发挥关键作用,以最大程度地提高未来的商业影响。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct digital manufacturing of mm-wave vertical interconnects
毫米波垂直互连的直接数字化制造
Laser enhanced direct print additive manufacturing for mm-wave components and packaging
用于毫米波元件和包装的激光增强直接打印增材制造
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Weller其他文献

Structure–activity relationship studies and sleep-promoting activity of novel 1-chloro-5,6,7,8-tetrahydroimidazo[1,5-<em>a</em>]pyrazine derivatives as dual orexin receptor antagonists. Part 2
  • DOI:
    10.1016/j.bmcl.2013.04.071
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thierry Sifferlen;Ralf Koberstein;Emmanuelle Cottreel;Amandine Boller;Thomas Weller;John Gatfield;Catherine Brisbare-Roch;Francois Jenck;Christoph Boss
  • 通讯作者:
    Christoph Boss
Theatrum Praecedentiae : zeremonieller Rang und gesellschaftliche Ordnung in der frühneuzeitlichen Stadt : Leipzig 1500-1800
实践剧场:早期城市的泽蒙尼尔·兰格和社会秩序:莱比锡 1500-1800 年
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Weller
  • 通讯作者:
    Thomas Weller
Herstellung von 1, 3-Diketonen und von Nitro-diketonen durch (1:1)-Acylierungen von Lithiumenolaten mit Acylchloriden
1, 3-二酮和硝基二酮 (1:1)-酰氯锂的酰化
  • DOI:
    10.1002/hlca.19810640313
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    D. Seebach;Thomas Weller;Gerd Protschuk;Albert K. Beck;Marvin S. Hoekstra
  • 通讯作者:
    Marvin S. Hoekstra
Orally active fibrinogen receptor antagonists. 2. Amidoximes as prodrugs of amidines.
口服活性纤维蛋白原受体拮抗剂。
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Thomas Weller;L. Alig;Maureen Beresini;Brent Blackburn;Stuart Bunting;P. Hadváry;Marianne Hürzeler Müller;Dietmar Knopp;Bernard Levet;M. Terry Lipari;Nishit B. Modi;Marcel Müller;C. Refino;Monique Schmitt;Peter Schönholzer;Sabine Weiss;Beat Steiner
  • 通讯作者:
    Beat Steiner

Thomas Weller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Weller', 18)}}的其他基金

Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
  • 批准号:
    2329206
  • 财政年份:
    2023
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Continuing Grant
Travel: 2023 International Microwave Symposium Educational Initiatives for Project Connect
旅行:2023 年国际微波研讨会 Project Connect 教育举措
  • 批准号:
    2312225
  • 财政年份:
    2023
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
GOALI: Mm-Wave Reconfigurable Additive Manufactured Packaging Systems (RAMPS) using Pulsed Picosecond Laser Processing
GOALI:使用脉冲皮秒激光加工的毫米波可重构增材制造包装系统 (RAMPS)
  • 批准号:
    1912679
  • 财政年份:
    2018
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
  • 批准号:
    1853174
  • 财政年份:
    2018
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Integrated Antenna System Design for High Clutter and High Bandwidth Channels Using Advanced Propagation Models
GOALI:协作研究:使用先进传播模型的高杂波和高带宽信道集成天线系统设计
  • 批准号:
    1509762
  • 财政年份:
    2015
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
2014 IEEE International Microwave Symposium Project Connect Support. To Be Held in Tampa, FL June 1-6, 2014.
2014 年 IEEE 国际微波研讨会项目 Connect 支持。
  • 批准号:
    1362027
  • 财政年份:
    2014
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
GOALI Collaborative Proposal: 3D RF Microsystems using Direct Digital Manufacturing Technology
GOALI 协作提案:使用直接数字制造技术的 3D RF 微系统
  • 批准号:
    1232183
  • 财政年份:
    2012
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
GOALI/COLLABORATIVE RESEARCH - Flexible Ferroelectric-Based Antenna Arrays For Conformal Radiometric Imaging
GOALI/协作研究 - 用于共形辐射成像的柔性铁电天线阵列
  • 批准号:
    0901779
  • 财政年份:
    2009
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
Collaborative Project: Multi-University Systems Education (MUSE) - A Model for Undergraduate Learning of Complex-Engineered Systems
合作项目:多大学系统教育 (MUSE) - 复杂工程系统本科学习模型
  • 批准号:
    0716317
  • 财政年份:
    2007
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
GOALI: Functional Magnetic Polymer Nanocomposite Films for Tunable RD Device Applications
GOALI:用于可调谐 RD 设备应用的功能磁性聚合物纳米复合薄膜
  • 批准号:
    0728073
  • 财政年份:
    2007
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
低插损的液晶高频毫米波封闭共面波导移相器的机理及实现方法
  • 批准号:
    62301043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向毫米波覆盖增强的高选择性硅基相控阵中继收发机芯片
  • 批准号:
    62371296
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
一种50飞秒抖动的毫米波小数分频全数字锁相环
  • 批准号:
    62374156
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于毫米波的波束管理和SLAM一体化理论与技术研究
  • 批准号:
    62301156
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041581/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Research Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X012123/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Research Grant
PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
  • 批准号:
    2234594
  • 财政年份:
    2023
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
Enabling wide area mm-wave mobile broadband networks
实现广域毫米波移动宽带网络
  • 批准号:
    DP230102252
  • 财政年份:
    2023
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了