Nanophotonics of RE/DNA/nanotube materials: From bio-sensing-on-chip to live stem cell measurements
RE/DNA/纳米管材料的纳米光子学:从片上生物传感到活干细胞测量
基本信息
- 批准号:1509786
- 负责人:
- 金额:$ 38.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Title: Fundamental physics and biosensing applications of composite fluorescent nanomaterials rare-earths combined with DNA-enclosed carbon nanotubesNontechnical:Nanomaterials have influenced drastically several aspects of modern life, one of those is associated with their power in medicine and health care. This research involves rare-earth based materials due to their excellent fluorescence rare earths have already found a significant application niche in lighting, solar cells, sensors, biological and medical diagnostics and imaging. The bioimaging applications will be further advanced in this project. It is a continuation of the previous study in which rare-earths were combined with a unique nanocarbon material, so called single-wall nanotubes. Nanotubes by themselves has been already used in various miniaturized sensors, which are so extremely small that can be placed on a fabric thread. Most recently this group proposed using nanotubes enclosed in the DNA for studying live cells and has obtained promising results. It has been already demonstrated how nanomaterials could improve sensing capabilities of rare-earths. New project will extend this study and focus on nanotubes as tiny antennas to magnify the optical signals received by rare-earths. Due to small (nanometer) scale of these optical elements they can penetrate inside the cells and transmit the biologically relevant information from there, potentially improving our knowledge about how cells work as building blocks of organisms and helping medicine and health sciences in solving their current problems. This research is accompanied by a vigorous outreach program, aimed both on the local community and STEM students nationwide.Technical:This project focuses on developing and studying materials for bioimaging based on the rare-earth complexes with single-wall nanotubes and single strand DNA. Significance of this research is in developing a new biosensing material. Since single-wall nanotubes have diameters of only a few nanometers, they are comparable to many biological macromolecules such as enzymes, antibodies, DNA plasmids, etc. and may interact with intracellular environment. This makes them increasingly relevant for new opportunities in biomedical research and applications. Though at early stage, this project enlighten us about how the living organisms, at the cell level, may be influenced by new modern nanomaterials (nanotubes) upon ingestion. Using optical non-destructing characterization the fate of the nanotubes inside the cells has been already determined on the previous stage of the project. In the course of new project the team will work on intertwined theoretical and experimental tasks, including experimental optical characterization and theory of near-field electromagnetic modes in the hybrid materials of nanotubes-DNA-rare-earth-ions; exploring performance of these nanomaterials for bio-sensing applications in photonic-crystals and inside bio-mimetic hydrogels; studying the role of hotspots in nanotube materials and their influence on the photoluminescence of rare-earth ions and/or DNA; experimental studies of modulation of optical response of photonic crystals incorporating biosensing materials inside its lattice; application of these nanomaterials inside micro-fluidics sensing system and to studying in vitro neural stem cell. A series of samples will be studied, prepared at Lehigh University as well as at University of Utah, LANL and NIST via the collaboration links. A diverse program for dissemination of those results involves research advising and teaching at Lehigh, outreach at local schools (Palisades High School, Moravian Academy), participation in exhibition at a school children development National facility (the DaVinci Discovery Center), STEM enhancement programs via local Community Colleges (NCCC, LCTI and LCCC) and local Kutztown University, REU and GAAN programs within the Physics Department.
摘要标题:复合荧光纳米材料的基础物理和生物传感应用稀土与DNA包裹的碳纳米管结合非技术:纳米材料已经深刻地影响了现代生活的几个方面,其中之一与其在医药和保健方面的力量有关。这项研究涉及稀土材料,由于其优异的荧光性能,稀土已经在照明、太阳能电池、传感器、生物和医学诊断以及成像方面找到了重要的应用领域。该项目将进一步推进生物成像技术的应用。这是之前研究的继续,在先前的研究中,稀土与一种独特的纳米碳材料结合在一起,即所谓的单壁纳米管。纳米管本身已经被用于各种微型传感器中,这种传感器非常小,可以放在布线上。最近,该小组提出使用包裹在DNA中的纳米管来研究活细胞,并取得了令人振奋的结果。它已经展示了纳米材料如何提高稀土的传感能力。新的项目将扩展这项研究,并将重点放在纳米管作为微小天线,以放大稀土接收到的光信号。由于这些光学元件的尺寸很小(纳米),它们可以穿透细胞并从那里传输与生物相关的信息,潜在地提高了我们对细胞如何作为生物体的组成部分的知识,并帮助医学和健康科学解决它们目前的问题。这项研究还伴随着一项针对当地社区和全国STEM学生的强有力的推广计划。技术:该项目专注于开发和研究基于单壁纳米管和单链DNA的稀土络合物的生物成像材料。本研究的意义在于开发一种新型的生物传感材料。由于单壁纳米管的直径只有几个纳米,可以与许多生物大分子如酶、抗体、DNA质粒等相媲美,并可以与细胞内环境相互作用。这使得它们与生物医学研究和应用中的新机会越来越相关。虽然在早期阶段,这个项目启发了我们,活的有机体,在细胞水平上,可能会在摄入时受到新的现代纳米材料(纳米管)的影响。利用光学非破坏性表征,在该项目的前一阶段已经确定了细胞内纳米管的命运。在新的项目过程中,该团队将致力于相互交织的理论和实验任务,包括实验光学表征和纳米管-DNA-稀土离子杂化材料的近场电磁模式理论;探索这些纳米材料在光子晶体和仿生水凝胶中的生物传感应用性能;研究热点在纳米管材料中的作用及其对稀土离子和/或DNA的光致发光的影响;实验研究在其晶格中加入生物传感材料的光子晶体的光学响应调制;这些纳米材料在微流体传感系统中的应用以及在体外研究神经干细胞方面的应用。一系列样本将通过合作链接在利哈伊大学以及犹他大学、LANL和NIST进行研究。传播这些成果的多样化计划包括在LeHigh提供研究咨询和教学,在当地学校(Palisade高中,摩拉维亚学院)进行推广,参加学校儿童发展中心(达芬奇发现中心)的展览,通过当地社区学院(NCCC,LCTI和LCCC)和当地Kutztown大学,REU和GAN计划在物理系内加强STEM。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slava Rotkin其他文献
Slava Rotkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slava Rotkin', 18)}}的其他基金
RAPID: Collaborative Research: One-step Express Test for Presymptomatic Detection to Prevent COVID-19 Spread
RAPID:协作研究:症状前检测的一步快速测试以防止 COVID-19 传播
- 批准号:
2032582 - 财政年份:2020
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Nanophotonics of RE/DNA/nanotube materials: From bio-sensing-on-chip to live stem cell measurements
RE/DNA/纳米管材料的纳米光子学:从片上生物传感到活干细胞测量
- 批准号:
1822736 - 财政年份:2017
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Rare-earth-DNA-nanotube complexes for bio-sensing applications
用于生物传感应用的稀土-DNA-纳米管复合物
- 批准号:
1202398 - 财政年份:2012
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
相似国自然基金
RE-BOA联合VA-ECMO对难治性心跳骤停患者脑复苏效果的评估
- 批准号:2025JJ80720
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Sr/RE复合变质下Al-Si-Mg-Cu合金的强韧化机制研究
- 批准号:2025JJ80374
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于实施科学理论和PRISM/RE-AIM框架的基层疾控体系韧性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于光生电荷调控的CeO2/RE-MOF异质结设计及光催化性能增强机
理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
实施科学视角下结核病防治“新疆模式”的因果效应评估与策略优化研究——基于RE-AIM框架和多中心阶梯整群随机试验
- 批准号:
- 批准年份:2024
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高效近红外发光Cr3+-RE3+共掺双钙钛矿的设计合成及pc-LED器件的制备与应用
- 批准号:
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
莺歌海盆地油气藏系统Re-Os年代学和Os同位素指纹研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
实施科学视角下结核病防治“新疆模式”的因果效应评估与策略优化研究--基于RE-AIM框架和多中心阶梯整群随机试验
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:地区科学基金项目
S100-Anx复合体及RE-出胞复合体介导胎盘滋养细胞内B族链球菌出胞的分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁铁矿Re-Os同位素定年体系的关键控制因素研究
- 批准号:42373027
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Microsatellite Instability Sequencing via Single-Molecule DNA Re-Reading
通过单分子 DNA 重读进行微卫星不稳定性测序
- 批准号:
10822077 - 财政年份:2023
- 资助金额:
$ 38.97万 - 项目类别:
EAGER: Re-engineering Agrobacterium for T-DNA delivery to chloroplasts
EAGER:重新设计农杆菌,将 T-DNA 传递到叶绿体
- 批准号:
2037155 - 财政年份:2020
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Identification of Novel Protein Regulators of Protein Re-localization in Saccharomyces cerevisiae during the DNA Damage Response
酿酒酵母 DNA 损伤反应期间蛋白质重新定位的新型蛋白质调节剂的鉴定
- 批准号:
504589-2017 - 财政年份:2019
- 资助金额:
$ 38.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Systematic re-estimation of polymorphism of T. pallidum genome from wider range of specimens including T. p DNA of lower copy numbers
从更广泛的样本(包括较低拷贝数的 T. p DNA)中系统地重新估计梅毒螺旋体基因组的多态性
- 批准号:
18K09184 - 财政年份:2018
- 资助金额:
$ 38.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Re-Examining Southern California Lake Sediment Cores with Environmental DNA to Revolutionize How We Study the Past
用环境 DNA 重新审视南加州湖沉积物核心,彻底改变我们研究过去的方式
- 批准号:
1759756 - 财政年份:2018
- 资助金额:
$ 38.97万 - 项目类别:
Continuing Grant
Identification of Novel Protein Regulators of Protein Re-localization in Saccharomyces cerevisiae during the DNA Damage Response**
酿酒酵母 DNA 损伤反应期间蛋白质重新定位的新型蛋白质调节剂的鉴定**
- 批准号:
504589-2017 - 财政年份:2018
- 资助金额:
$ 38.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Identification of Novel Protein Regulators of Protein Re-localization in Saccharomyces cerevisiae during the DNA Damage Response
酿酒酵母 DNA 损伤反应期间蛋白质重新定位的新型蛋白质调节剂的鉴定
- 批准号:
504589-2017 - 财政年份:2017
- 资助金额:
$ 38.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigating the role of DNMT1 in rat perirhinal cortex-mediated object recognition: Involvement in DNA re-methylation?
研究 DNMT1 在大鼠鼻周皮层介导的物体识别中的作用:参与 DNA 重新甲基化?
- 批准号:
476130-2015 - 财政年份:2017
- 资助金额:
$ 38.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Nanophotonics of RE/DNA/nanotube materials: From bio-sensing-on-chip to live stem cell measurements
RE/DNA/纳米管材料的纳米光子学:从片上生物传感到活干细胞测量
- 批准号:
1822736 - 财政年份:2017
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Investigating the role of DNMT1 in rat perirhinal cortex-mediated object recognition: Involvement in DNA re-methylation?
研究 DNMT1 在大鼠鼻周皮层介导的物体识别中的作用:参与 DNA 重新甲基化?
- 批准号:
476130-2015 - 财政年份:2016
- 资助金额:
$ 38.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




