On the Geometry of Moduli Space and Kahler-Einstein Geometry
论模空间几何与卡勒-爱因斯坦几何
基本信息
- 批准号:1510232
- 负责人:
- 金额:$ 18.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will work on fundamental problems in differential geometry. Although this research project concerns differential geometry, a subject in pure mathematics, the methods and results significantly influence our understanding of the universe. In particular, this project investigates deep problems in the mathematical aspects of string theory, a topic of great current interest in theoretical physics. The investigator is involved in K-12 educational activities and also deeply involved in innovations in both undergraduate and graduate curricula. The PI will work on several important problems in Kahler geometry and spectral theory. This project will continue a long-term investigation of the Weil-Peterson geometry on Calabi-Yau moduli, incorporating recent results in Kahler-Einstein geometry. The PI will study Agmon type estimates of the Bergman kernel and will continue to study the essential spectrum of differential forms on complete noncompact manifolds. The research will build on recent results of the PI and collaborators in complex geometry and spectral theory, including proof of the rationality of the Chern-Weil forms on moduli space of Kahler manifolds; construction of extremal metrics on certain ruled manifolds; study of the off-diagonal expansion of the Bergman kernels and the Poincare series of Bergman kernels on noncompact complete Kahler manifolds; proof of the Antunes-Freitas conjecture; and study of the relation between Dirichlet and Neumann eigenvalues. The long-term goal of this project is improved understanding of the geometry of moduli space; short term goals include study of the Bergman kernel expansion and the spectrum of differential forms on a complete non-compact manifold.
研究员将研究微分几何中的基本问题。虽然这个研究项目涉及微分几何,一个纯数学的主题,方法和结果显着影响我们对宇宙的理解。特别是,这个项目调查弦理论的数学方面的深层次问题,这是理论物理学当前非常感兴趣的一个主题。 调查员参与K-12教育活动,并深入参与本科和研究生课程的创新。PI将致力于Kahler几何和谱理论中的几个重要问题。该项目将继续对卡-丘模量的Weil-Peterson几何进行长期研究,并结合Kahler-Einstein几何的最新结果。PI将研究Bergman核的Agmon类型估计,并将继续研究完全非紧流形上微分形式的本质谱。该研究将建立在PI和合作者在复几何和谱理论方面的最新成果之上,包括证明Kahler流形模空间上的Chern-Weil形式的合理性;构造某些规则流形上的极值度量;研究非紧完备Kahler流形上Bergman核和Bergman核的Poincare级数的非对角展开;证明Antunes-Freitas猜想;研究了Dirichlet特征值与Neumann特征值之间的关系。该项目的长期目标是提高对模空间几何的理解;短期目标包括研究Bergman核展开和完全非紧流形上的微分形式谱。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The spectrum of the Laplacian on forms over flat manifolds
平坦流形上的拉普拉斯算子谱
- DOI:10.1007/s00209-019-02407-5
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Charalambous, Nelia;Lu, Zhiqin
- 通讯作者:Lu, Zhiqin
The spectrum of continuously perturbed operators and the Laplacian on forms
连续扰动算子的谱和形式上的拉普拉斯算子
- DOI:10.1016/j.difgeo.2019.05.002
- 发表时间:2019
- 期刊:
- 影响因子:0.5
- 作者:Charalambous, Nelia;Lu, Zhiqin
- 通讯作者:Lu, Zhiqin
Analysis of the Laplacian on the moduli space of poliarzied Calabi-Yau manifolds
极化Calabi-Yau流形模空间的拉普拉斯分析
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lu, Zhiqin Xu
- 通讯作者:Lu, Zhiqin Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiqin Lu其他文献
The essential spectrum of the Laplacian
拉普拉斯算子的基本谱
- DOI:
10.1215/21562261-1550967 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nelia Charalambous;Zhiqin Lu - 通讯作者:
Zhiqin Lu
Normal Scalar Curvature Inequalities
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Zhiqin Lu - 通讯作者:
Zhiqin Lu
On the essential spectrum of complete non-compact manifolds☆
完全非紧流形的本质谱☆
- DOI:
10.1016/j.jfa.2010.10.010 - 发表时间:
2010 - 期刊:
- 影响因子:1.7
- 作者:
Zhiqin Lu;Detang Zhou - 通讯作者:
Detang Zhou
Commutator Estimates Comprising the Frobenius Norm – Looking Back and Forth
包含 Frobenius 范数的换向器估计 – 回顾和回顾
- DOI:
10.1007/978-3-319-49182-0_22 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhiqin Lu;David Wenzel - 通讯作者:
David Wenzel
The Neumann Isospectral Problem for Trapezoids
梯形的诺伊曼等谱问题
- DOI:
10.1007/s00023-017-0617-7 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hamid Hezari;Zhiqin Lu;J. Rowlett - 通讯作者:
J. Rowlett
Zhiqin Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiqin Lu', 18)}}的其他基金
Bergman Kernel Estimates and Spectrum of Complete Riemannian Manifold
完整黎曼流形的伯格曼核估计和谱
- 批准号:
1908513 - 财政年份:2019
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
On the Geometry of Calabi-Yau Moduli and Kahler-Einstein manifolds
论卡拉比-丘模数和卡勒-爱因斯坦流形的几何
- 批准号:
1206748 - 财政年份:2012
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
On the Geometry of Calabi-Yau Moduli and Kahler-Einstein manifolds
论卡拉比-丘模数和卡勒-爱因斯坦流形的几何
- 批准号:
0904653 - 财政年份:2009
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
CAREER: On the Geometry of Kahler-Einstein Manifolds
职业:关于卡勒-爱因斯坦流形的几何
- 批准号:
0347033 - 财政年份:2004
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
On the Geometry of Kahler-Einstein Manifolds
关于卡勒-爱因斯坦流形的几何
- 批准号:
0204667 - 财政年份:2002
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
- 批准号:
0104592 - 财政年份:2001
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
On the Geometry of Kahler-Einstein Manifolds
关于卡勒-爱因斯坦流形的几何
- 批准号:
0196086 - 财政年份:2000
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
On the Geometry of Kahler-Einstein Manifolds
关于卡勒-爱因斯坦流形的几何
- 批准号:
9971506 - 财政年份:1999
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
- 批准号:
EP/X002004/1 - 财政年份:2023
- 资助金额:
$ 18.8万 - 项目类别:
Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 18.8万 - 项目类别:
Discovery Early Career Researcher Award
understand the geometric structures of the moduli space of heterotic theories using supergravity,worldsheet sigma models and differential geometry
使用超引力、worldsheet sigma 模型和微分几何理解异质理论模空间的几何结构
- 批准号:
2283468 - 财政年份:2019
- 资助金额:
$ 18.8万 - 项目类别:
Studentship
Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves
双曲曲线模空间相关的算术几何与量子场论的跨学科研究
- 批准号:
18K13385 - 财政年份:2018
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moduli Space of Reduced Grobner Bases and Its Geometry
约化格罗布纳基的模空间及其几何
- 批准号:
18J12368 - 财政年份:2018
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Period map of the moduli space of categories and derived geometry
类别模空间周期图和导出几何
- 批准号:
17K14150 - 财政年份:2017
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Mirror Symmetry and Geometry of Moduli Space
模空间的镜像对称与几何研究
- 批准号:
25400061 - 财政年份:2013
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GEOMETRY AND DYNAMICS ON MODULI SPACE
模空间的几何和动力学
- 批准号:
1205016 - 财政年份:2012
- 资助金额:
$ 18.8万 - 项目类别:
Continuing Grant
Tropical geometry of the moduli space of curves and the grassmannian
曲线模空间和格拉斯曼函数的热带几何
- 批准号:
331524-2007 - 财政年份:2009
- 资助金额:
$ 18.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Tropical geometry of the moduli space of curves and the grassmannian
曲线模空间和格拉斯曼函数的热带几何
- 批准号:
331524-2007 - 财政年份:2008
- 资助金额:
$ 18.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral