UNS: Intelligent Multi-Criteria Building Ventilation Control within Dynamic Urban Environments
UNS:动态城市环境中的智能多标准建筑通风控制
基本信息
- 批准号:1511151
- 负责人:
- 金额:$ 29.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1511151 (Waring) Americans spend 90% of our time indoors, where poor indoor air quality (IAQ) is a top risk to human health and productivity. Maintaining acceptable IAQ requires ventilation, or replacing indoor with outdoor air, usually by mechanical systems. Ventilation rates are set as minimum standards for commercial buildings (e.g. 8.5 L/s/person for offices), though new research suggests that higher rates increase occupant productivity and decrease absenteeism. However, increasing ventilation requires energy to move and condition the air, can strain the electricity grid, and can degrade IAQ in polluted urban areas. The current minimum ventilation rate paradigm is simplistic, with no framework for evaluating most of these numerous and competing positive and negative consequences. As such, many opportunities are missed for promoting environmental sustainability, including increasing occupant wellbeing, improving energy efficiency, and reducing greenhouse gas and local pollutant emissions. The purpose of this project is to capitalize on these opportunities by researching next-generation, intelligent ventilation strategies for high performance green buildings.Since elements such as weather, pollution, and energy prices have diurnal and seasonal profiles, large benefits may be realized at minimal energy costs with systems-level strategies that capitalize on transient behaviors within a dynamic control framework. This project will research dynamic, holistic, multi-criteria ventilation control in green office buildings. It will: (1) Formalize a user-oriented, multi-criteria decision-making framework with a comprehensive and flexible utility function, and evaluate the impacts of intelligent ventilation in a variety of settings with special attention to the influence of building and location characteristics, and (2) Investigate self-learning, plug-and-play dynamic ventilation control methods that can adapt to specific office buildings and meet the unique challenges of the building industry. It will assess impacts and develop control algorithms with detailed simulations, as well as validate the work in a real building in Philadelphia that is already instrumented to measure pollutants and energy use. Results will be disseminated to (i) the public through a web display of the real-time state of the experimental building; to (ii) the scientific community through conference and journal publications and investigator affiliations with the Consortium for Building Energy Innovation; and to (iii) industry through affiliations with technical committees in the American Society for Heating, Refrigeration, and Air-conditioning Engineers (ASHRAE).
1511151(警告)美国人90%的时间都在室内度过,糟糕的室内空气质量(IAQ)是人类健康和生产力的最大风险。维持可接受的室内空气质素需要通风,或用室外空气代替室内空气,通常采用机械系统。商业建筑的通风率被设定为最低标准(例如,办公室的通风率为8.5 L/s/人),尽管新的研究表明,较高的通风率可以提高居住者的工作效率并减少缺勤。然而,增加通风需要能量来移动和调节空气,可能会给电网带来压力,并可能降低污染城市地区的室内空气质量。目前的最小通风量模式过于简单,没有框架来评估这些众多的和相互竞争的积极和消极的后果。因此,许多促进环境可持续性的机会被错过了,包括增加居住者的福祉,提高能源效率,减少温室气体和当地污染物的排放。该项目的目的是通过研究下一代高性能绿色建筑的智能通风策略来利用这些机会。由于天气、污染和能源价格等因素具有昼夜和季节性特征,因此在动态控制框架内利用瞬态行为的系统级策略可以以最小的能源成本实现巨大的效益。本项目将研究绿色办公建筑的动态、整体、多准则通风控制。它将:(1)形成一个以用户为导向,具有综合灵活效用功能的多标准决策框架,并评估智能通风在各种设置中的影响,特别关注建筑和位置特征的影响;(2)研究适应特定办公建筑并满足建筑行业独特挑战的自学习,即插即用动态通风控制方法。它将通过详细的模拟来评估影响和开发控制算法,并在费城的一座真实建筑中验证这项工作,该建筑已经配备了测量污染物和能源使用的仪器。研究结果将通过网页向公众展示实验建筑的实时状态;(ii)通过会议和期刊出版物以及与建筑能源创新联盟的调查员关系向科学界;通过与美国采暖、制冷和空调工程师协会(ASHRAE)的技术委员会的隶属关系向行业提供服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Waring其他文献
Observation of children's physical activity levels in primary school: Is the school an ideal setting for meeting government activity targets?
小学儿童体力活动水平观察:学校是否是实现政府活动目标的理想场所?
- DOI:
10.1177/1356336x07072672 - 发表时间:
2007 - 期刊:
- 影响因子:3.4
- 作者:
Michael Waring;P. Warburton;M. Coy - 通讯作者:
M. Coy
Developing a Framework for Primary PE
制定初级 PE 框架
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Michael Waring - 通讯作者:
Michael Waring
Methodological issues in piloting a physical activity diary with young people
与年轻人一起试点体育活动日记的方法论问题
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
H. Wormald;M. Sleap;Julie Brunton;L. Hayes;P. Warburton;Michael Waring;M. White - 通讯作者:
M. White
Trainee teachers' cognitive styles and notions of differentiation
实习教师的认知风格和差异化概念
- DOI:
10.1108/00400910810862128 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
C. Evans;Michael Waring - 通讯作者:
Michael Waring
Intercalation into DNA
- DOI:
10.1007/bf00537740 - 发表时间:
1968-01-01 - 期刊:
- 影响因子:3.100
- 作者:
Michael Waring - 通讯作者:
Michael Waring
Michael Waring的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Waring', 18)}}的其他基金
Small molecule treatments for EGFR inhibitor resistant lung cancer
EGFR 抑制剂耐药性肺癌的小分子治疗
- 批准号:
MR/X004872/1 - 财政年份:2022
- 资助金额:
$ 29.97万 - 项目类别:
Research Grant
CAREER: Time- and size-resolved formation of secondary organic aerosol in indoor air
职业:室内空气中二次有机气溶胶的时间和尺寸分辨形成
- 批准号:
1055584 - 财政年份:2011
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-Beam and Beam-Scanning Antenna Arrays for Intelligent Wireless System
用于智能无线系统的多波束和波束扫描天线阵列
- 批准号:
DE240100787 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Discovery Early Career Researcher Award
PhD in Intelligent Multi-function RF Sensor Solutions
智能多功能射频传感器解决方案博士
- 批准号:
2883782 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Studentship
CAREER: Intelligent Multi-Contrast Imaging Platform for Needle-Based Interventions
职业:用于针干预的智能多对比成像平台
- 批准号:
2238648 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312448 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Intelligent DEPression Tracking (I-DEPT) - A Novel, Longitudinal and Multi-Modal Machine Learning Framework for Quantifying Depression Symptoms
智能抑郁追踪 (I-DEPT) - 一种新颖的、纵向的、多模态的机器学习框架,用于量化抑郁症状
- 批准号:
10050419 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Collaborative R&D
Intelligent and distributed multi-objective methods for optimization and control of multiagents/cooperative systems
用于多智能体/协作系统优化和控制的智能分布式多目标方法
- 批准号:
RGPIN-2021-03737 - 财政年份:2022
- 资助金额:
$ 29.97万 - 项目类别:
Discovery Grants Program - Individual
Intelligent Coordination for Multi-Agent Systems
多智能体系统的智能协调
- 批准号:
RGPIN-2020-06540 - 财政年份:2022
- 资助金额:
$ 29.97万 - 项目类别:
Discovery Grants Program - Individual
Multi-Criteria Intelligent Decision Making Approaches and Applications
多准则智能决策方法及应用
- 批准号:
RGPIN-2017-06034 - 财政年份:2022
- 资助金额:
$ 29.97万 - 项目类别:
Discovery Grants Program - Individual