Intelligent and distributed multi-objective methods for optimization and control of multiagents/cooperative systems

用于多智能体/协作系统优化和控制的智能分布式多目标方法

基本信息

  • 批准号:
    RGPIN-2021-03737
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Large teams of robots can accomplish complex tasks such as land-mine clearance. To do so, researchers from robotics to computer science have developed algorithms to have each agent in the multiagent robotic swarm make smart choices in optimizing several objectives. At this level, multi-objective optimization techniques will make multiagent systems more efficient and customized to accomplish the tasks at hand, saving time, life, and energy; however, the existing theory is falling behind. Indeed, in multiagent problems with many objectives, the existing literature considers mainly problems in which agents optimize the diverse functions with equal priorities; however, there exist many cases in which there are objectives with different importance. For example, teams of robots may want to explore different regions of an area, or agents may have different priorities in trajectory planning when minimizing both energy consumption and travel time. Therefore, the next breakthrough in multi-objective optimization multiagent problems is to capacitate agents to prioritize objectives individually.  Thus, through distributed multi-objective optimization, the research program's objective is enhancing the decision-making skills of multiagent systems to enable new practical features, increase agent capacities, and provide a broader range of operating conditions of such systems. To support the research program's objective and help with the next breakthrough, this discovery grant consists of four innovative and independent projects but that are interconnected. In particular, the first five years of this research program will focus on developing distributed multi-objective optimization methods, addressing the existing theoretical limitations in a multiagent context, including in swarm intelligence techniques, and integrating distributed multi-objective optimization methods into foraging and target search tasks. The proposed program will have a significant impact on various fields. From a technological and humanitarian standpoint, with the developed algorithms, land-mine clearance robots will independently prioritize areas requiring more exploration according to external data received in real-time by the agents. It will boost exploration efficiency, resulting in saving more lives. Moreover, the developed algorithms will improve foraging tasks performed by multi-robot systems used in many applications such as surface chemical skimming of unintentional oil spills. From an environmental and social standpoint, the algorithms will dispatch the distributed energy resources in smart-grid more efficiently, resulting in saving money for the consumers and the stakeholders and preserving the environment. Also, in the domain of intelligent transportation systems, the algorithms will be useful tools for distributed routes planning.
大型机器人团队可以完成诸如扫雷等复杂任务。为了做到这一点,从机器人到计算机科学的研究人员已经开发出算法,让多智能体机器人群中的每个智能体在优化多个目标时做出明智的选择。在这个层面上,多目标优化技术将使多智能体系统更有效,更定制,以完成手头的任务,节省时间,寿命和能源;然而,现有的理论已经落后。事实上,在具有多个目标的多智能体问题中,现有文献主要考虑智能体以相同优先级优化不同功能的问题;然而,存在许多情况下目标的重要性不同。例如,机器人团队可能想要探索一个区域的不同区域,或者智能体在最小化能耗和旅行时间时可能在轨迹规划中具有不同的优先级。因此,多目标优化多智能体问题的下一个突破是使智能体能够单独确定目标的优先级。 因此,通过分布式多目标优化,研究计划的目标是提高多智能体系统的决策技能,使新的实用功能,增加代理能力,并提供更广泛的操作条件,这样的系统。为了支持研究计划的目标,并帮助下一个突破,这项发现补助金包括四个创新和独立的项目,但这些项目是相互关联的。特别是,该研究计划的前五年将专注于开发分布式多目标优化方法,解决多智能体环境中现有的理论局限性,包括群体智能技术,并将分布式多目标优化方法集成到觅食和目标搜索任务中。该计划将对各个领域产生重大影响。从技术和人道主义的角度来看,通过开发的算法,排雷机器人将根据代理实时接收的外部数据独立地优先考虑需要更多勘探的地区。它将提高勘探效率,从而拯救更多的生命。此外,所开发的算法将改善觅食任务的多机器人系统中使用的许多应用程序,如无意的石油泄漏的表面化学撇除。从环境和社会的角度来看,该算法将更有效地调度智能电网中的分布式能源,从而为消费者和利益相关者节省资金,并保护环境。同时,在智能交通系统领域,该算法将是分布式路径规划的有用工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Blondin, MaudeJosée其他文献

Blondin, MaudeJosée的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Blondin, MaudeJosée', 18)}}的其他基金

Intelligent and distributed multi-objective methods for optimization and control of multiagents/cooperative systems
用于多智能体/协作系统优化和控制的智能分布式多目标方法
  • 批准号:
    RGPIN-2021-03737
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and distributed multi-objective methods for optimization and control of multiagents/cooperative systems
用于多智能体/协作系统优化和控制的智能分布式多目标方法
  • 批准号:
    DGECR-2021-00463
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Méthodes hybrides à base de métaheuristiques pour la commande et l'optimisation énergétique de systèmes multimachines et multisources avec contraintes multiples
混合方法和多机多源系统能量优化的基础方法
  • 批准号:
    468907-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Méthodes hybrides à base de métaheuristiques pour la commande et l'optimisation énergétique de systèmes multimachines et multisources avec contraintes multiples
混合方法和多机多源系统能量优化的基础方法
  • 批准号:
    468907-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Algorithmes évolutifs et nouvelles stratégies d'optimisation multi-ojectives pour le contrôle
控制的多目标优化算法和新策略
  • 批准号:
    472092-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Méthodes hybrides à base de métaheuristiques pour la commande et l'optimisation énergétique de systèmes multimachines et multisources avec contraintes multiples
混合方法和多机多源系统能量优化的基础方法
  • 批准号:
    468907-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Optimisation énergétique et répartition d'effort dans les systèmes dynamiques couplés
动力系统耦合中的优化和分配
  • 批准号:
    430733-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Stratégies de répartition d'effort dans les systèmes fortement couplés dans une perspective d'efficacité énergétique
系统强化与能量效率视角的重新分配策略
  • 批准号:
    425876-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
  • 批准号:
    2339509
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Multi-modal insights of spatially distributed cells with associations of diseases and drug response
空间分布细胞与疾病和药物反应关联的多模式见解
  • 批准号:
    10714602
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235140
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
  • 批准号:
    2412020
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220496
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326592
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
  • 批准号:
    2326591
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了