UNS: Defect Engineering in Zinc-Blende-Type Absorbers
UNS:闪锌矿型吸收器的缺陷工程
基本信息
- 批准号:1511737
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: David MitziProposal Number: 1511737The sun represents the most abundant potential source of sustainable energy on earth. Solar cells for producing electricity require materials that absorb the sun's energy and convert its photons to electrons, a process called photovoltaics. While solar cells made from crystalline silicon currently have about 90 percent of the worldwide solar photovoltaics (PV) market, alternative solar cells made from very thin layers of non-silicon materials abundant in the earth's crust offer a number of advantages. These include dramatically reduced materials consumption and low-cost fabrication, as well as new form factors that are flexible or foldable, ultralight in weight, and enable facile integration into building structures. Unfortunately, new materials based on elements abundant in the earth's crust cannot match the sunlight-to-electric power conversion efficiency of rigid crystalline silicon-based materials, and so are presently not competitive. This project seeks to gain fundamental understanding of the power conversion performance one promising class of thin-film photovoltaic materials based on zinc blends, which are made from a mixture of nontoxic elements abundant in the earth's crust and are relatively inexpensive. The research will focus on controlling the atomic level disorder within these materials to ultimately provide a viable pathway to low-cost, scalable, high-performance solar photovoltaics. The research will also engage and train a new generation of undergraduate, graduate and postdoctoral scientists in the important area of sustainable energy materials development. Results from the research will also be incorporated into undergraduate and graduate level materials science courses at Duke University. Current thin film solar photovoltaic materials in commercial use, including CIGS and Cd-Te based materials, contain elements that are either costly or rare in the earth's crust (e.g., indium, tellurium) or present toxicity issues (e.g., cadmium). These sustainability issues potentially impose limits on future cost reduction and market share. Recently, kesterite-based thin-film solar cells made of (Cu)2-ZnSn-(S,Se)4-(CZTSSe), in which indium/gallium in CIGS-Se materials are replaced by more readily available and lower-cost elements zinc/tin, have achieved conversion efficiencies of up to 12.6%. However, this efficiency is still only about one-half that of the best crystalline silicon or thin-film commercial solar PV materials. The proposed research is based on the hypothesis that anti-site structural disorder in current zinc-blende material matrices (e.g., Cu on Zn, Zn on Cu) lead to electrical potential energy fluctuations and band tailing that effectively limits the open-circuit voltage. The overall goals of this research are to understand the nature of anti-site disorder in copper chalcogenide based zinc-blende materials for solar PV, and to design new blende materials in which the level of anti-site disorder can be controlled and reduced through a combination of rational computational and experimental materials design approaches. The research plan has three objectives. The first objective is to computationally evaluate prospective zinc-blende-related materials for PV absorbers, focusing on identifying the materials features that lead to more benign recombination-based defects and grain boundaries. The second objective is to design and synthesize stable CZTSSe analogs that have a lower propensity towards anti-site disorder and band tailing. Finally, the third objective is to study the impact of varying amounts of anti-site disorder on materials and their device properties. Achievement of the project goals will provide a framework for understanding defect control in complex energy harvesting materials and offer one pathway to new scalable and high-efficiency solar PV devices.
PI:大卫米兹提案编号:1511737太阳代表着地球上最丰富的可持续能源的潜在来源。 用于发电的太阳能电池需要吸收太阳能并将其光子转化为电子的材料,这一过程称为光电子学。 虽然由晶体硅制成的太阳能电池目前约占全球太阳能光伏(PV)市场的90%,但由地壳中丰富的非硅材料制成的替代太阳能电池具有许多优势。 其中包括大幅减少材料消耗和低成本制造,以及灵活或可折叠、重量超轻并易于集成到建筑结构中的新外形。 不幸的是,基于地壳中丰富的元素的新材料不能与刚性晶体硅基材料的太阳光到电力的转换效率相匹配,因此目前没有竞争力。该项目旨在获得对基于锌混合物的一类有前途的薄膜光伏材料的功率转换性能的基本理解,锌混合物是由地壳中丰富的无毒元素的混合物制成的,并且相对便宜。 该研究将专注于控制这些材料中的原子级无序,最终为低成本,可扩展,高性能的太阳能光伏提供可行的途径。该研究还将在可持续能源材料开发的重要领域吸引和培养新一代本科生,研究生和博士后科学家。 研究结果也将纳入杜克大学的本科和研究生材料科学课程。 目前商业使用的薄膜太阳能光伏材料,包括CIGS和Cd-Te基材料,含有在地壳中昂贵或稀有的元素(例如,铟,碲)或存在毒性问题(例如,镉)。 这些可持续性问题可能会限制未来的成本降低和市场份额。 最近,由(Cu)2-ZnSn-(S,Se)4-(CZTSSe)制成的基于锡碲石的薄膜太阳能电池已经实现了高达12.6%的转换效率,其中CIGS-Se材料中的铟/镓被更容易获得且成本更低的元素锌/锡替代。然而,这种效率仍然只有最好的晶体硅或薄膜商业太阳能光伏材料的一半左右。所提出的研究是基于这样的假设,即在当前的锌合金材料基质中的反位结构无序(例如,Zn上的Cu、Cu上的Zn)导致电势能波动和有效地限制开路电压的带拖尾。本研究的总体目标是了解太阳能光伏用铜硫族化物基锌掺杂材料中反位无序的性质,并设计新的掺杂材料,其中反位无序的水平可以通过合理的计算和实验材料设计方法的组合来控制和减少。研究计划有三个目标。 第一个目标是通过计算评估用于光伏吸收器的潜在锌相关材料,重点是识别导致更良性的基于复合的缺陷和晶界的材料特征。 第二个目标是设计和合成稳定的CZTSSe类似物,其具有较低的反位点紊乱和条带拖尾倾向。 最后,第三个目标是研究不同量的反位无序对材料及其器件性能的影响。项目目标的实现将为理解复杂能量收集材料的缺陷控制提供一个框架,并为新型可扩展和高效太阳能光伏器件提供一条途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Mitzi其他文献
Perovskites in the spotlight
- DOI:
10.1557/mrs.2014.200 - 发表时间:
2014-09-10 - 期刊:
- 影响因子:4.900
- 作者:
Prachi Patel;David Mitzi - 通讯作者:
David Mitzi
David Mitzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Mitzi', 18)}}的其他基金
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323547 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
Collaborative Research: Amorphous-Crystalline Switching in Organic-Inorganic Hybrid Semiconductors
合作研究:有机-无机混合半导体中的非晶-晶体转换
- 批准号:
2114117 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
- 批准号:
2050841 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
GOALI: Additive and Stoichiometry Engineering in Perovskites: Building Deeper Understanding of the Impact on Optoelectronic Properties for Energy Applications
GOALI:钙钛矿的添加剂和化学计量工程:更深入地了解对能源应用光电性能的影响
- 批准号:
2004869 - 财政年份:2020
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
GOALI: Doping Control and Processes in Metal Halide Perovskites
GOALI:金属卤化物钙钛矿的掺杂控制和工艺
- 批准号:
1709294 - 财政年份:2017
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
相似海外基金
Topological Defect Engineering on Carbon Electrode for Advanced Batteries
先进电池碳电极的拓扑缺陷工程
- 批准号:
22K14757 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of tough ceramics with photoplastic effect induced by defect engineering
缺陷工程诱导光塑性强韧陶瓷的实现
- 批准号:
22K18878 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Defect engineering of quantum devices
量子器件的缺陷工程
- 批准号:
RGPIN-2017-04634 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual
Additive Manufacturing - Structures on Demand - Managing microstructure and defect populations in Engineering Alloys
增材制造 - 按需结构 - 管理工程合金中的微观结构和缺陷群
- 批准号:
2575881 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Studentship
Defect Engineering Enabling Efficient Solar Hydrogen Production
缺陷工程实现高效太阳能制氢
- 批准号:
DE210100930 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Early Career Researcher Award
Research on the direct conversion method of amorphous diamond by nano-defect engineering
纳米缺陷工程直接转化非晶金刚石方法研究
- 批准号:
21K04905 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nanoscale control of materials properties by in-situ defect engineering
通过原位缺陷工程对材料性能进行纳米级控制
- 批准号:
468617440 - 财政年份:2021
- 资助金额:
$ 29.98万 - 项目类别:
Research Grants
Composite Defect Engineering of Diamond Single Crystals under High Pressure
高压金刚石单晶复合缺陷工程
- 批准号:
20K21096 - 财政年份:2020
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Defect engineering by spatiotemporally controlled light pulse
通过时空控制光脉冲进行缺陷工程
- 批准号:
20H02656 - 财政年份:2020
- 资助金额:
$ 29.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Defect engineering of quantum devices
量子器件的缺陷工程
- 批准号:
RGPIN-2017-04634 - 财政年份:2020
- 资助金额:
$ 29.98万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




