UNS: Collaborative Research: Describing Macromolecular Transport through Chemically-Tuned Nanoporous Membranes via Theory, Computation, and Experiment
UNS:合作研究:通过理论、计算和实验描述通过化学调节的纳米多孔膜的大分子运输
基本信息
- 批准号:1511835
- 负责人:
- 金额:$ 16.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Proposals#1511835 / #1511862Boudouris, Bryan / Phillip, WilliamMembranes are crucial in a number of separation processes where desired products are isolated from undesired species. In particular, many emerging pharmaceutical treatments require the purification of active long-chain biomacromolecules as they leave the biopharmaceutical reactor. These biomacromolecules recently have been approved for the treatment of a variety of life-threatening diseases, including cancer and autoimmune diseases. However, the high cost of large-scale production and purification of these important materials, which is often transferred to the patient, has prevented their widespread implementation in clinical practice. This proposal will evaluate how macromolecules such as these important therapeutic agents are transported through membrane materials. By combining experimental results with theoretical predictions and computational simulations, a complete picture of how transport occurs through small pores will be developed. This opens the potential of generating more cost-effective purification systems, which could lessen the costs of patient treatment and open an economical means by which to treat a number of devastating diseases.The transport of macromolecular species is of fundamental import in a range of technologically-important membrane separations applications (e.g., the separation of therapeutic proteins). However, the exact mechanism of how a dissolved polymer chain traverses a membrane with pore sizes comparable to or smaller than the hydrodynamic diameter of the chain at thermodynamic equilibrium and without external stimuli (e.g., applied electric fields) is not understood fully. As such, a critical need exists to establish how pore size, pore chemistry, and the solution environment affect the interfacial transport of macromolecules across well-structured membranes. Here, a combination of experimental techniques, thermodynamic theory, and computational modeling is utilized in order to tie nanoscale phenomena to physical observables at the macroscopic level. The vision will result in a molecule-to-membrane level understanding of chemically-selective macromolecular transport through small pores; this understanding, which will be developed by connecting continuum transport properties to molecular models through advanced materials characterization methodologies, will enable the PIs to develop the design principles for the rational engineering of chemically-selective membranes in a number of current and emerging separations platforms.Generating structure-property-performance relationships in the realm of size and chemically-selective membranes will lead to improved membrane design. This, in turn, will help decrease production costs and increase the energy efficiency of many processes required for the production of common consumer goods and more high-value products (e.g., therapeutic pharmaceuticals). As such, successful completion of this work has the potential to impact current manufacturing processes in a positive manner. Furthermore, the collaboration between Purdue University and the University of Notre Dame will allow students from both institutions to perform work at the partner institution. In this way, the students will have a more diverse educational experience. In addition to graduate students, undergraduate and high school students will perform research on this project. In particular, the high school student will be part of the American Chemical Society's Project SEED program. Therefore, this work has the ability to advance fundamental membrane science and to impact a unique group of interdisciplinary scientists and engineers with diverse socioeconomic and educational backgrounds.
合作提案#1511835/#1511862 Boudouris,Bryan /菲利普,WilliamMembranes在许多分离过程中是至关重要的,在这些过程中,需要的产物与不需要的物质分离。特别是,许多新兴的药物治疗需要在活性长链生物大分子离开生物制药反应器时对其进行纯化。这些生物大分子最近已被批准用于治疗各种危及生命的疾病,包括癌症和自身免疫性疾病。然而,这些重要材料的大规模生产和纯化的高成本(其经常转移到患者)阻碍了它们在临床实践中的广泛实施。该提案将评估这些重要的治疗剂等大分子如何通过膜材料转运。通过将实验结果与理论预测和计算模拟相结合,将开发出如何通过小孔进行运输的完整图片。这开启了产生更具成本效益的纯化系统的潜力,这可以降低患者治疗的成本,并开启了治疗许多毁灭性疾病的经济手段。大分子物质的运输在一系列技术上重要的膜分离应用(例如,治疗性蛋白质的分离)。然而,溶解的聚合物链如何穿过具有与在热力学平衡下并且没有外部刺激(例如,施加的电场)没有被完全理解。因此,迫切需要确定孔径、孔化学和溶液环境如何影响大分子穿过结构良好的膜的界面传输。在这里,实验技术,热力学理论和计算建模的组合被利用,以配合纳米级的现象,在宏观层面上的物理观测。该愿景将导致分子到膜水平的理解化学选择性大分子通过小孔运输;这种理解,这将是通过先进的材料表征方法连接连续传输特性的分子模型,将使PI开发的设计原则,为合理的工程化学-在尺寸和化学选择性膜领域中产生结构-性质-性能关系将导致改进的膜设计。这反过来将有助于降低生产成本,并提高生产普通消费品和更高价值产品(例如,治疗药物)。因此,这项工作的成功完成有可能以积极的方式影响当前的制造工艺。此外,普渡大学和圣母大学之间的合作将允许来自这两个机构的学生在合作机构工作。这样,学生将有更多样化的教育体验。除了研究生,本科生和高中生将对这个项目进行研究。特别是,高中生将成为美国化学学会项目种子计划的一部分。因此,这项工作有能力推进基础膜科学,并影响一群独特的跨学科科学家和工程师,他们具有不同的社会经济和教育背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Boudouris其他文献
Engineering flexible dopamine biosensors: blended EGylated conjugated and radical polymers in organic electrochemical transistors
工程柔性多巴胺生物传感器:有机电化学晶体管中混合的 EG 化共轭和自由基聚合物
- DOI:
10.1038/s41528-025-00412-9 - 发表时间:
2025-05-02 - 期刊:
- 影响因子:15.500
- 作者:
Dinh Cung Tien Nguyen;Quyen Vu Thi;Quynh H. Nguyen;Jaehyoung Ko;Hoyeon Lee;Bryan Boudouris;Seung-Yeol Jeon;Yongho Joo - 通讯作者:
Yongho Joo
Bryan Boudouris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Boudouris', 18)}}的其他基金
Impact of Radical Polymer Architecture on Spin Transport
自由基聚合物结构对自旋输运的影响
- 批准号:
2321618 - 财政年份:2023
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
2053097 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Intergovernmental Personnel Award
Tailoring Transport in Transparent and Conducting Non-conjugated Polymers for Next-Generation Materials in Organic Photovoltaic Devices
为有机光伏器件中的下一代材料定制透明导电非共轭聚合物的传输
- 批准号:
1336731 - 财政年份:2013
- 资助金额:
$ 16.47万 - 项目类别:
Continuing Grant
相似海外基金
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2129627 - 财政年份:2021
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028541 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028371 - 财政年份:2020
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1852379 - 财政年份:2018
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1705346 - 财政年份:2017
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1704326 - 财政年份:2017
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Testing the paradigms of the colloidal glass: Novel concentration jump experiments and large scale computer modeling
UNS:协作研究:测试胶体玻璃的范例:新颖的浓度跳跃实验和大规模计算机建模
- 批准号:
1801717 - 财政年份:2017
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Characterizing pyrogenic soil organic matter as a source of nitrogenous disinfection byproducts
UNS:合作研究:表征热解土壤有机物作为含氮消毒副产物的来源
- 批准号:
1512705 - 财政年份:2016
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: 30%-Efficient III-V/Silicon Tandem Solar Cells
UNS:%20%20协作%20研究:%2030%-高效%20III-V/硅%20串联%20太阳能%20电池
- 批准号:
1736181 - 财政年份:2016
- 资助金额:
$ 16.47万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Measurement and Modeling of the Pathways of Potential Fugitive Methane Emissions During Hydrofracking
UNS:合作研究:水力压裂过程中潜在逃逸甲烷排放路径的测量和建模
- 批准号:
1717142 - 财政年份:2016
- 资助金额:
$ 16.47万 - 项目类别:
Continuing Grant