Impact of Radical Polymer Architecture on Spin Transport
自由基聚合物结构对自旋输运的影响
基本信息
- 批准号:2321618
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryAdvances in computing have revolutionized the way the world operates, communicates, and does business; however, due to outstanding technological breakthroughs and visionary implementation, the current microelectronics paradigm is reaching its upper limit of computing performance. As such, new operational paradigms, which will rely on the development of novel materials, must be discovered, developed, and matured such that these critical technologies continue to evolve. One promising thrust in pushing this idea towards reality is that of spin-based quantum computing. In this context, spin refers to an inherent property of electrons that is distinct from the inherent charge that is often used to conduct electrons (i.e., an electric current), and it is a property that can be manipulated such that there is transport of spin (i.e., a spin current). This project, with support from the Polymers program in NSF’s Division of Materials Research, develops new polymer materials that are anticipated to have advanced spin transport properties. In addition to providing systems with performance that is potentially better than the current state of the art, using polymers as the spin-transport material opens the opportunity of creating low-cost solutions to this technology opportunity. Therefore, successful execution of the project could lead to next-generation quantum computing materials that are readily integrated into device infrastructures. Furthermore, the educational and outreach components of the project provide unique experiences to a diverse group of scientists and engineers with an aim of broadening participation in science and engineering. In addition to providing summer research opportunities to high school students from economically-diverse backgrounds and undergraduate students, graduate student researchers on this project participate in a domestic trainee exchange program to advance their technical skills. Additionally, a new massive open online course (MOOC) based on the specific class of polymers utilized in this program is offered such that the results are communicated to a broad audience in a rapid and digestible manner. In these ways, the project pushes the bounds of fundamental science such that it offers clear translation to new technologies and new educational programs that advance national prosperity and national defense.Technical SummaryThe polymer science community has contributed to advancing organic electronic materials for multiple end-use applications. As such, much effort has been placed in elucidating the fundamental underpinnings associated with the chemistry and physics of these macromolecules; however, the ability to apply these same polymer science tools to manipulate spin transport in macromolecular materials is not at the same level. Moreover, most of the work in the community has focused on conjugated polymers given the history of the field and the good deal of success these materials have had in advancing key device technologies. On the other hand, radical polymers (i.e., nonconjugated macromolecules with stable open-shell sites present at their pendant groups) are a new class of spin-transporting organic materials and differ in two key ways relative to most spin transport materials. First, the carbon-based nature of these polymer conductors causes them to possess weak spin-orbit couplings, higher spin relaxation times, and long spin diffusion lengths (i.e., 50 nm) relative to many of their inorganic counterparts, and these materials characteristics are essential for enhanced spin transport. Additionally, radical polymers offer a different spin transport environment compared to most of their conjugated polymer counterparts. That is, the inherent nature of their stable open-shell pendant sites ensures that spin transport occurs through a paramagnetic medium, which could enhance the spin diffusion length. To these points, this project, supported by the Polymers program in NSF’s Division of Materials Research, establishes the underlying structure-property-performance relationships associated with the macromolecular architecture, nanostructural environment, magnetic environment, and spin transport properties of radical polymers. Furthermore, this project advances the local American Chemical Society (ACS) Project SEED Program, which provides summer research opportunities to high school students from economically-disadvantaged backgrounds. Moreover, it provides for a means by which to have a student exchange with a leading polymer synthesis group in the United States such that cross-training of chemical engineering graduate students occurs. Finally, the project includes the development of a MOOC describing radical polymer fundamentals, because a course like this does not exist currently. Therefore, the project has the potential to make inroads in terms of fundamental scientific and broader impact while also supporting educational and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算的进步已经彻底改变了世界的运作,通信和做生意的方式;然而,由于杰出的技术突破和有远见的实施,当前的微电子范例正在达到其计算性能的上限。因此,必须发现、开发和成熟依赖于新材料开发的新操作模式,以便这些关键技术继续发展。将这一想法推向现实的一个有希望的推动力是基于自旋的量子计算。在此上下文中,自旋是指电子的固有性质,其不同于通常用于传导电子的固有电荷(即,电流),并且它是可以被操纵以使得存在自旋的传输的性质(即,自旋电流)。该项目在NSF材料研究部门的聚合物计划的支持下,开发了预计具有先进自旋传输特性的新聚合物材料。除了为系统提供可能比现有技术更好的性能外,使用聚合物作为自旋传输材料还提供了为该技术机会创造低成本解决方案的机会。因此,该项目的成功执行可能会导致下一代量子计算材料很容易集成到设备基础设施中。此外,该项目的教育和外联部分为各种科学家和工程师群体提供了独特的经验,目的是扩大对科学和工程的参与。除了为来自不同经济背景的高中生和本科生提供暑期研究机会外,该项目的研究生研究人员还参加了国内实习生交流计划,以提高他们的技术技能。此外,还提供了基于该计划中使用的特定聚合物类别的新的大规模开放式在线课程(MOOC),以便以快速和易于理解的方式将结果传达给广大受众。通过这些方式,该项目推动了基础科学的界限,从而为促进国家繁荣和国防的新技术和新教育计划提供了明确的翻译。技术摘要聚合物科学界为推动有机电子材料的多种最终用途应用做出了贡献。因此,人们付出了很大的努力来阐明与这些大分子的化学和物理相关的基本基础;然而,应用这些相同的聚合物科学工具来操纵大分子材料中的自旋输运的能力并不处于同一水平。此外,鉴于该领域的历史以及这些材料在推进关键器件技术方面取得的巨大成功,该领域的大部分工作都集中在共轭聚合物上。另一方面,自由基聚合物(即,非共轭大分子(在其侧基上具有稳定的开壳位点)是一类新的自旋传输有机材料,并且相对于大多数自旋传输材料在两个关键方面不同。首先,这些聚合物导体的碳基性质使它们具有弱的自旋-轨道耦合、较高的自旋弛豫时间和长的自旋扩散长度(即, 50 nm),并且这些材料特性对于增强的自旋输运是必不可少的。此外,自由基聚合物提供了一个不同的自旋传输环境相比,大多数共轭聚合物的对应物。也就是说,其稳定的开壳悬垂位点的固有性质确保了通过顺磁介质发生自旋输运,这可以增强自旋扩散长度。对于这些点,该项目由NSF材料研究部门的聚合物计划支持,建立了与大分子结构,纳米结构环境,磁性环境和自由基聚合物的自旋输运性质相关的基本结构-性质-性能关系。此外,该项目还推进了当地的美国化学学会(ACS)项目种子计划,该计划为经济困难背景的高中生提供夏季研究机会。此外,它提供了一种手段,通过它有一个学生交流与领先的聚合物合成集团在美国,这样的交叉培训化学工程研究生发生。最后,该项目还包括开发一个描述自由基聚合物基础的MOOC,因为目前还没有这样的课程。因此,该项目有可能在基础科学和更广泛的影响方面取得进展,同时也支持教育和推广活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Boudouris其他文献
Engineering flexible dopamine biosensors: blended EGylated conjugated and radical polymers in organic electrochemical transistors
工程柔性多巴胺生物传感器:有机电化学晶体管中混合的 EG 化共轭和自由基聚合物
- DOI:
10.1038/s41528-025-00412-9 - 发表时间:
2025-05-02 - 期刊:
- 影响因子:15.500
- 作者:
Dinh Cung Tien Nguyen;Quyen Vu Thi;Quynh H. Nguyen;Jaehyoung Ko;Hoyeon Lee;Bryan Boudouris;Seung-Yeol Jeon;Yongho Joo - 通讯作者:
Yongho Joo
Bryan Boudouris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Boudouris', 18)}}的其他基金
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
2053097 - 财政年份:2020
- 资助金额:
$ 54万 - 项目类别:
Intergovernmental Personnel Award
UNS: Collaborative Research: Describing Macromolecular Transport through Chemically-Tuned Nanoporous Membranes via Theory, Computation, and Experiment
UNS:合作研究:通过理论、计算和实验描述通过化学调节的纳米多孔膜的大分子运输
- 批准号:
1511835 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Tailoring Transport in Transparent and Conducting Non-conjugated Polymers for Next-Generation Materials in Organic Photovoltaic Devices
为有机光伏器件中的下一代材料定制透明导电非共轭聚合物的传输
- 批准号:
1336731 - 财政年份:2013
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似国自然基金
前缘激波诱导Radical-Farming燃烧机理的数值研究
- 批准号:10702064
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Radical COF: A challenge toward novel organic electromagnetic polymer materials
Radical COF:对新型有机电磁聚合物材料的挑战
- 批准号:
22KF0231 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Control of crosslinked polymer architecture in living radical polymerization
活性自由基聚合中交联聚合物结构的控制
- 批准号:
22K04817 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GOALI: Connecting the Dots: Using Radical-formation Control to Achieve Desired EB-initiated Polymer Properties
目标:连接点:使用自由基形成控制来实现所需的 EB 引发聚合物性能
- 批准号:
2054775 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Development of Methodology for Testing Corrosion Behavior of Polymer Brush Coatings on Metals via Surface-Initiated Atom Transfer Radical Polymerization
通过表面引发原子转移自由基聚合测试金属上聚合物刷涂层腐蚀行为的方法的开发
- 批准号:
557660-2021 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Postdoctoral Fellowships
Development of Methodology for Testing Corrosion Behavior of Polymer Brush Coatings on Metals via Surface-Initiated Atom Transfer Radical Polymerization
通过表面引发原子转移自由基聚合测试金属上聚合物刷涂层腐蚀行为的方法的开发
- 批准号:
557660-2021 - 财政年份:2020
- 资助金额:
$ 54万 - 项目类别:
Postdoctoral Fellowships
Collaborative Research: High-Performance Biocatalytic Membranes with Self-Contained Radical Polymer Mediators for Water Reclamation and Reuse
合作研究:具有独立自由基聚合物介体的高性能生物催化膜,用于水回收和再利用
- 批准号:
1924715 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Collaborative Research: High-Performance Biocatalytic Membranes with Self-Contained Radical Polymer Mediators for Water Reclamation and Reuse
合作研究:具有独立自由基聚合物介体的高性能生物催化膜,用于水回收和再利用
- 批准号:
1924714 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Creation of super heat-resistant maleimide polymer materials by fusion of radical polymerization and polyaddition reaction
自由基聚合与加聚反应融合制备超耐热马来酰亚胺聚合物材料
- 批准号:
18H02038 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Excellence in Research (EiR): Radical Scavenging Interactions of Carbon Nanodots and Smart Polymer-Carbon Nanodots Systems
卓越研究(EiR):碳纳米点和智能聚合物-碳纳米点系统的自由基清除相互作用
- 批准号:
1832134 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
GOALI: Connecting the Dots: Using Radical-formation Control to Achieve Desired EB-initiated Polymer Properties
目标:连接点:使用自由基形成控制来实现所需的 EB 引发聚合物性能
- 批准号:
1804641 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Standard Grant