Discrete models and conformally invariant limits
离散模型和共形不变极限
基本信息
- 批准号:1512853
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In statistical mechanics and probability theory, systems consisting of a large number of microscopic elements - such as molecules - individually subject to randomness or noise, and interacting with each other, play a prominent role. It is a fundamental problem to understand how simple, microscopic interaction rules produce intricate random features on a macroscopic scale, features that can be modeled by continuous stochastic structures. This general area of problems is relevant to many important physical phenomena, such as porosity and ferromagnetism. The project's emphasis is on the case of two-dimensional systems, where the last fifteen years have seen spectacular and ongoing progress, involving a wide variety of mathematical concepts and techniques, along with a rapprochement between mathematical and theoretical physics. The PI will continue to engage in mathematical and interdisciplinary training activities of students and junior researchers, in particular in relation with his research projects at the interface of Physics and Mathematics. The program of research described in this project is mainly focused on two-dimensional critical models in statistical physics, with special emphasis on conformal invariance and the interplay between the field formulation and the geometric aspects of their scaling limits. The introduction of Schramm-Loewner evolutions (SLE) has deeply influenced the study of conformally invariant random systems. This new class of stochastic continuous planar curves has proved extremely effective in describing the scaling limit of interfaces of critical models of statistical physics, such as percolation and the Ising model. The research projects of the PI have three main focuses. The first is the study of systems of SLE-type paths and loops, in particular in relation with the Conformal Field Theory formalism. The second concerns the dimer model and aspects of the free field description of its scaling limit, building on the analysis of families of Cauchy-Riemann operators. The third focus involves the exact relations between SLE paths and an ambient Gaussian field. The expectation of the PI is that these studies will help provide a deeper understanding of critical models and the interplay of the relevant concepts and tools in combinatorics, probability, analysis, complex geometry and representation theory.
在统计力学和概率论中,由大量微观元素(如分子)组成的系统,它们各自受到随机性或噪声的影响,并相互作用,发挥着突出的作用。理解简单的微观相互作用规则如何在宏观尺度上产生复杂的随机特征是一个基本问题,这些特征可以通过连续随机结构来建模。这个问题的一般领域与许多重要的物理现象有关,如孔隙度和铁磁性。该项目的重点是二维系统的情况下,在过去的15年里已经看到了壮观的和持续的进展,涉及各种各样的数学概念和技术,沿着数学和理论物理之间的和解。PI将继续参与学生和初级研究人员的数学和跨学科培训活动,特别是与物理和数学接口的研究项目有关。该项目中描述的研究计划主要集中在统计物理学中的二维临界模型,特别强调共形不变性以及场公式与其缩放限制的几何方面之间的相互作用。Schramm-Loewner演化的引入对共形不变随机系统的研究产生了深远的影响。这类新的随机连续平面曲线在描述统计物理临界模型(如渗流和伊辛模型)界面的标度极限方面被证明是非常有效的。PI的研究项目有三个主要重点。首先是研究系统的SLE型路径和回路,特别是在与共形场论形式主义。第二个问题的二聚体模型和自由场描述其标度极限方面,建立在分析的柯西-黎曼算子的家庭。第三个焦点涉及SLE路径和环境高斯场之间的精确关系。PI的期望是,这些研究将有助于更深入地了解关键模型以及组合学,概率,分析,复杂几何和表示理论中相关概念和工具的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julien Dubedat其他文献
Julien Dubedat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julien Dubedat', 18)}}的其他基金
Geometry of random Loewner chains
随机 Loewner 链的几何结构
- 批准号:
1308476 - 财政年份:2013
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Critical planar systems and conformal invariance
临界平面系统和共形不变性
- 批准号:
1005749 - 财政年份:2010
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
$ 16.5万 - 项目类别:
Continuing Grant
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
- 批准号:
2608661 - 财政年份:2025
- 资助金额:
$ 16.5万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 16.5万 - 项目类别:
Studentship
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Discovery Projects
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
- 批准号:
MR/Y019717/1 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 16.5万 - 项目类别:
Standard Grant