INSPIRE: Adaptive Multi-Scale Modeling of Plasmas

INSPIRE:等离子体的自适应多尺度建模

基本信息

项目摘要

This INSPIRE project is jointly funded by the Plasma Physics and Computational Physics programs in the Physics Division in the Mathematical and Physical Sciences Directorate, the Magnetospheric Physics program in the Atmospheric and Geospace Sciences Division in the Directorate for Geosciences, and the Office of Integrative Activities. Ionized gas, or in scientific terms plasma, is the most common state of matter in the Universe. In the solar system, for example, the solar corona where solar eruptions occur, the solar wind that carries the erupted plasma and magnetic field from the Sun to the Earth, the magnetosphere surrounding the Earth and protecting us from the harmful effects of the eruption, and the ionosphere through which radio communications and GPS signals propagate and get disturbed, all consist of plasma. Understanding plasma is crucial for predicting and mitigating the effects of space weather. Plasmas also play an important role in engineering, for example in the design of fusion type reactors that promise to provide an inexhaustible source of clean energy for humanity. Computational modeling of plasma dynamics is very challenging due to the different spatial and temporal scales and the complex behavior of the system. The project is aimed at improving the efficiency of present plasma simulation models by a factor of 1000 or even more. If successful, the new model will provide accurate and affordable simulations for systems that currently cannot be modeled even on the largest supercomputers.There are different approaches for plasma modeling that all have advantages and drawbacks. The most accurate kinetic methods describe all the important effects of plasma by describing the full distribution function in a six dimensional phase space, but they have tremendous computational cost. Even on today's supercomputers, modeling a large three-dimensional system with kinetic methods is far out of reach. Alternative fluid-type methods describe the plasma distribution function with a handful of moments, such as density, velocity and pressure. Solving for these quantities in addition to the magnetic field can be done quite efficiently, and in fact one can model the solar corona, the solar wind, and the magnetosphere with global fluid models with reasonable computational resources. Unfortunately, in most systems there are some parts of the domain where the fluid description is not sufficient, and this can have consequences for the global solution. The project aims at combining the kinetic and fluid type methods in an adaptive and dynamic fashion. The expensive kinetic model will be restricted to the small parts of the domain where the fluid description is not accurate enough, while the efficient fluid methods will be employed in the vast majority of the domain. This hybrid approach promises to provide accurate solutions at a tiny fraction of the cost of the fully kinetic models. A speed up of factor of 1000 or even more is expected. This will allow modeling global plasma systems with unprecedented accuracy and vastly improve our understanding and predictive capabilities.
该INSPIRE项目由数学和物理科学局物理司的等离子体物理和计算物理方案、地球科学局大气和地球空间科学司的磁层物理方案和综合活动办公室共同资助。电离气体,或科学术语等离子体,是宇宙中最常见的物质状态。例如,在太阳系中,发生太阳喷发的日冕、将喷发的等离子体和磁场从太阳带到地球的太阳风、环绕地球并保护我们免受喷发有害影响的磁层,以及通过其传播无线电通信和GPS信号并受到干扰的电离层,都由等离子体组成。了解等离子体对于预测和减轻空间天气的影响至关重要。等离子体在工程中也发挥着重要作用,例如在聚变型反应堆的设计中,聚变型反应堆有望为人类提供取之不尽的清洁能源。由于空间和时间尺度的不同以及系统行为的复杂性,等离子体动力学的计算建模是非常具有挑战性的。该项目旨在将现有等离子体模拟模型的效率提高1000倍甚至更多。如果成功,新模型将为目前甚至无法在最大的超级计算机上建模的系统提供准确和负担得起的模拟。等离子体建模有不同的方法,都有优点和缺点。最精确的动力学方法通过描述六维相空间中的全分布函数来描述等离子体的所有重要效应,但它们的计算量很大。即使在今天的超级计算机上,用动力学方法对一个大型三维系统进行建模也是遥不可及的。替代的流体类型方法用几个矩来描述等离子体的分布函数,例如密度、速度和压力。除了磁场外,求解这些量可以非常有效地完成,事实上,人们可以使用全球流体模型和合理的计算资源来模拟太阳日冕、太阳风和磁层。不幸的是,在大多数系统中,域的某些部分的流体描述不够充分,这可能会对全局解产生影响。该项目旨在以自适应和动态的方式将运动型和流体型方法结合起来。昂贵的动力学模型将被限制在流体描述不够准确的领域的一小部分,而高效的流体方法将被应用于领域的绝大多数。这种混合方法有望以完全动力学模型的极小一部分成本提供精确的解决方案。预计速度将提高1000倍甚至更多。这将使全球等离子体系统的建模具有前所未有的准确性,并极大地提高我们的理解和预测能力。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A six-moment multi-fluid plasma model
六时刻多流体等离子体模型
  • DOI:
    10.1016/j.jcp.2019.02.023
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Huang, Zhenguang;Tóth, Gábor;van der Holst, Bart;Chen, Yuxi;Gombosi, Tamas
  • 通讯作者:
    Gombosi, Tamas
Gauss's Law satisfying Energy-Conserving Semi-Implicit Particle-in-Cell method
  • DOI:
    10.1016/j.jcp.2019.02.032
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxi Chen;G. Tóth
  • 通讯作者:
    Yuxi Chen;G. Tóth
Scaling the Ion Inertial Length and Its Implications for Modeling Reconnection in Global Simulations: SCALING THE ION INERTIAL LENGTH
缩放离子惯性长度及其对全局模拟中重连接建模的影响:缩放离子惯性长度
  • DOI:
    10.1002/2017ja024189
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tóth, Gábor;Chen, Yuxi;Gombosi, Tamas I.;Cassak, Paul;Markidis, Stefano;Peng, Ivy Bo
  • 通讯作者:
    Peng, Ivy Bo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabor Toth其他文献

Preliminary study of assessment scales for parents/caregivers of children with developmental disabilities
发育障碍儿童家长/照顾者评估量表的初步研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabor Toth;Yasuko Ozaki;Masahide Saito
  • 通讯作者:
    Masahide Saito
The effect of contact with persons with intellectual dis-abilities on attitude of
与智障人士接触对态度的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masahide Saito;Yasuko Ozaki;Gabor Toth
  • 通讯作者:
    Gabor Toth
タンザニアにおける薬用植物知識の地域性と多層性―秘密・情報共有を選ぶ住民と伝統的医療従事者
坦桑尼亚药用植物知识的区域特征和多层次性:选择分享秘密和信息的居民和传统医生
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chieko Kanai;Gabor Toth;Miho Kuroda;Atsuko Miyake;and Takashi Itahashi;Ren’ya SATO and Tingzuo WANG;阪本公美子,八塚春名,須田征志,津田勝憲
  • 通讯作者:
    阪本公美子,八塚春名,須田征志,津田勝憲
Handbook of Assessment and Diagnosis of Autism Spectrum Disorder (Chapter 20. Intelligence) (Autism and Child Psychopathology Series)
自闭症谱系障碍评估与诊断手册(第 20 章:智力)(自闭症与儿童精神病理学系列)
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chieko Kanai;Gabor Toth;Takashi Itahashi;Ryuichiro Hashimoto;Nobumasa Kato
  • 通讯作者:
    Nobumasa Kato
乳幼児期における発達障害の理解と支援 2 知っておきたい発達障害の療育 第2章「自閉症スペクトラム障害 (ASD)の療育」の「海外の感覚運動統合療法の動向」
了解和支持儿童早期发育障碍 2 关于发育障碍治疗您需要了解的知识 《自闭症谱系障碍(ASD)的治疗》第 2 章“国外感觉运动整合治疗的趋势”
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    澤田純明;奈良貴史;松永光平;Gabor Toth
  • 通讯作者:
    Gabor Toth

Gabor Toth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabor Toth', 18)}}的其他基金

SWQU: NextGen Space Weather Modeling Framework Using Data, Physics and Uncertainty Quantification
SWQU:使用数据、物理和不确定性量化的下一代空间天气建模框架
  • 批准号:
    2027555
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
PRE-EVENTS Multiscale Space Weather Modeling LRAC Travel Support
会前活动 多尺度空间天气建模 LRAC 旅行支持
  • 批准号:
    2031019
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
PREEVENTS Track 2: Integrated Modeling of Extreme Space Weather Events from Electron to Global Scales
预防事件轨道 2:从电子到全球尺度的极端空间天气事件的综合建模
  • 批准号:
    1663800
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Advanced Space Weather Modeling
先进的空间天气建模
  • 批准号:
    1640510
  • 财政年份:
    2016
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
  • 批准号:
    EP/Y002539/1
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
  • 批准号:
    2890822
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Studentship
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
ERI: Adaptive and Resilient Communication-Aware Multi-Robot Coordination
ERI:自适应和弹性通信感知多机器人协调
  • 批准号:
    2301749
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
  • 批准号:
    2316654
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
  • 批准号:
    23K19982
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Adaptive Testing of Cognitive Function based on multi-dimensionalItem Response Theory
基于多维项目反应理论的认知功能自适应测试
  • 批准号:
    10900990
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305883
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了