Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
基本信息
- 批准号:1515161
- 负责人:
- 金额:$ 45.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator develops and applies effective mathematical analysis and scientific computation tools to systematically search for extreme behavior in some of the fundamental equations of physical fluid mechanics. The goal is to derive precise predictions of physically significant quantities from first principles. The work capitalizes on recent developments to implement ideas from optimal control theory and the calculus of variations to compute fluid flows achieving maximal mixing, optimal transport, or other extreme dissipation. Transport, mixing, and dissipation are among the most fundamental features of fluid flows and are of foundational significance for important applications ranging from microfluidics engineering to modeling in climate science and astrophysics. The control and optimization techniques adopted here constitute a new and unified computationally aided analysis approach to these problems. This project directly involves advanced training for graduate students and postdoctoral researchers.This project utilizes methods of modern applied mathematics and scientific computation. Mathematical measures of mixing introduced by the investigator and collaborators are utilized in optimal control analyses of the advection and advection-diffusion equations in order to place absolute limits on passive tracer mixing by incompressible flows, and to illuminate key features of particularly effective stirring strategies. Computational control and applied analysis are employed to construct incompressible fluid flows optimizing transport between impenetrable surfaces and produce new transport bounds for buoyancy-driven Rayleigh-Benard convection and the outstanding problem of turbulent convection. Optimal control techniques are developed and deployed to determine maximal enstrophy production in the incompressible three-dimensional Navier-Stokes equations over finite time intervals. Extremal solutions provide new insight into fully nonlinear vorticity amplification in unforced flows, and this component of the project is a novel and promising framework for the study of one of the signal challenges for 21st century applied mathematics: the regularity question for the 3D Navier-Stokes equations.
研究者开发并应用有效的数学分析和科学计算工具,系统地搜索一些物理流体力学基本方程中的极端行为。目标是从第一性原理推导出物理量的精确预测。这项工作利用了最近的发展来实现最优控制理论和变分法的思想,以计算达到最大混合、最佳输送或其他极端耗散的流体流动。输运、混合和耗散是流体流动的最基本特征,对于从微流体工程到气候科学和天体物理学的建模等重要应用具有基础意义。本文采用的控制和优化技术为这些问题提供了一种新的、统一的计算辅助分析方法。本项目直接涉及研究生和博士后研究人员的高级培训。本项目运用现代应用数学和科学计算方法。研究者和合作者引入的混合数学方法被用于平流和平流扩散方程的最优控制分析,以便对不可压缩流动的被动示踪剂混合施加绝对限制,并阐明特别有效的搅拌策略的关键特征。采用计算控制和应用分析方法构建了不可压缩流体流动,优化了不可穿透表面之间的输运,并为浮力驱动的瑞利-贝纳德对流和湍流对流的突出问题建立了新的输运界。开发并应用了最优控制技术来确定有限时间间隔内不可压缩三维Navier-Stokes方程的最大熵产。极值解提供了对非强制流动中完全非线性涡度放大的新见解,该项目的这一组成部分是研究21世纪应用数学信号挑战之一的一个新颖而有前途的框架:三维Navier-Stokes方程的正则性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Doering其他文献
Charles Doering的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Doering', 18)}}的其他基金
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
- 批准号:
1205219 - 财政年份:2012
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
- 批准号:
0927587 - 财政年份:2009
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
- 批准号:
0855335 - 财政年份:2009
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
- 批准号:
0553487 - 财政年份:2006
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
- 批准号:
0555324 - 财政年份:2006
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
- 批准号:
0244859 - 财政年份:2003
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
- 批准号:
9900635 - 财政年份:1999
- 资助金额:
$ 45.49万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
- 批准号:
9709494 - 财政年份:1997
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Standard Grant
Beyond Query: Exploratory Subgraph Discovery and Search System
超越查询:探索性子图发现和搜索系统
- 批准号:
DP240101591 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Projects
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Studentship
Search for the Dimuon decay of the Standard Model Higgs Boson using ATLAS
使用 ATLAS 搜索标准模型希格斯玻色子的 Dimuon 衰变
- 批准号:
2907975 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Studentship
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/2 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Fellowship
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Preference-discovery and Repeated Consumer Search
偏好发现和重复消费者搜索
- 批准号:
24K04899 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: SPRF: A Comprehensive Modeling Framework for Semantic Memory Search
博士后奖学金:SPRF:语义记忆搜索综合建模框架
- 批准号:
2313985 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Fellowship Award
Can the Relational Account predict search in multiple-element displays?
关系帐户可以预测多元素显示中的搜索吗?
- 批准号:
DP240102774 - 财政年份:2024
- 资助金额:
$ 45.49万 - 项目类别:
Discovery Projects