Studies in Mathematical Physics: Advection, Convection and Turbulent Transport

数学物理研究:平流、对流和湍流传输

基本信息

项目摘要

This research program is focused on the development and application of rigorous analytical and computational approaches to some longstanding problems in fluid dynamics and turbulence with the goal of deriving reliable mathematical estimates of physically important quantities for solutions of the advection, advection-diffusion, and Navier-Stokes and related systems of partial differential equations. These have important applications in the applied physical sciences and engineering, including weather prediction and climate modeling. The project has three major components: Advection: Mathematical mixing measures introduced by the principal investigator and collaborators will be applied to study solutions of the advection and advection-diffusion equations as models of laminar and turbulent mixing. Analysis will place absolute limits on mixing for passive tracers in terms of bulk and/or statistical features of the stirring flows, and it will indicate key features of particularly efficient stirring. New searches for optimal stirring strategies will be undertaken, and the mixing effectiveness of turbulence will be investigated. Convection: Issues in thermal convection will be studied via analysis and direct numerical simulation. The sharpness of new rigorous limits on heat transport in the classical two-dimensional model of Rayleigh-Benard convection will be tested via asymptotic analysis and computation of laminar flows and high Rayleigh number simulations of turbulent flows. New estimates for three-dimensional convection will be pursued exploiting the maximum principle for the temperature equation in the Boussinesq approximation. Energy dissipation and enstrophy production: A major new program to determine maximal enstrophy production in the three-dimensional Navier-Stokes equations over finite time intervals will be initiated. Mathematical and computational techniques in the context of maximal palinstrophy production in the two dimensional Navier-Stokes equations will be developed. New methods for determining absolute limits on the bulk and time averaged turbulent energy dissipation rate in solutions of the Navier-Stokes equations will be sought for simple flow setups where current analysis methods fail. Broader impacts: These projects are suitable for doctoral students and postdoctoral researchers at the University of Michigan. The Principal Investigator's research routinely involves collaborations with graduate students, postdocs, junior faculty, and distinguished senior researchers in a variety of different departments at institutions across the United States and beyond. These interactions foster broad dissemination of results, stimulate and motivate new investigations, and promote transfer of mathematical methods across disciplinary, institutional, and national boundaries. The Principal Investigator is also actively engaged in organized efforts to encourage and enhance the participation of women and members of under-represented groups in physics and mathematics education and research.
该研究计划的重点是开发和应用严格的分析和计算方法来解决流体动力学和湍流中的一些长期存在的问题,目的是推导出对流,对流扩散和Navier-Stokes方程以及相关偏微分方程系统的物理重要量的可靠数学估计。这些在应用物理科学和工程中有重要的应用,包括天气预报和气候建模。该项目有三个主要组成部分:平流:主要研究者和合作者介绍的数学混合措施将用于研究平流和对流扩散方程的解,作为层流和湍流混合的模型。分析将在搅拌流的体积和/或统计特征方面对被动示踪剂的混合施加绝对限制,并且它将指示特别有效搅拌的关键特征。对最佳搅拌策略进行新的探索,并对湍流的混合效果进行研究。对流:将通过分析和直接数值模拟研究热对流问题。通过层流的渐近分析和计算以及湍流的高Rayleigh数模拟,将测试Rayleigh-Benard对流经典二维模型中热传输的新严格限制的尖锐性。三维对流的新估计将采用Boussinesq近似中温度方程的最大值原理。能量耗散和涡度拟能产生:将启动一个主要的新方案,以确定三维纳维尔-斯托克斯方程在有限时间间隔内的最大涡度拟能产生。数学和计算技术的背景下,最大的回文生产的二维Navier-Stokes方程将被开发。新的方法来确定的体积和时间平均湍流能量耗散率的Navier-Stokes方程的解决方案的绝对限制,将寻求简单的流动设置,目前的分析方法失败。更广泛的影响:这些项目适合密歇根大学的博士生和博士后研究人员。首席研究员的研究通常涉及与研究生,博士后,初级教师和杰出的高级研究人员在各种不同的部门在美国和超越机构的合作。这些互动促进了结果的广泛传播,刺激和激励新的调查,并促进跨学科,机构和国家边界的数学方法的转移。首席研究员还积极参与有组织的努力,以鼓励和加强妇女和代表性不足的群体成员参与物理和数学教育和研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0555324
  • 财政年份:
    2006
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401258
  • 财政年份:
    2024
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235641
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235487
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
  • 批准号:
    2329854
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235311
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
Study of deformation mechanism and mechanical properties of bundle structures based on collaboration between condensed matter physics and mathematical morphology
基于凝聚态物理与数学形态学协同的束结构变形机制与力学性能研究
  • 批准号:
    23H01299
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Continuing Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235413
  • 财政年份:
    2023
  • 资助金额:
    $ 52.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了