Studies in Mathematical Physics: Advection, Convection and Turbulent Transport

数学物理研究:平流、对流和湍流传输

基本信息

项目摘要

This research project in mathematical physics and applied analysis is a study of qualitative and quantitative properties of solutions of the partial differential equations of fluid mechanics including the Navier-Stokes equations. The Navier-Stokes equations constitute the basic mathematical model of fluid flow and are believed to contain turbulence among their solutions. Turbulent transport and mixing have important applications in, and implications for, many areas of applied physical sciences and engineering and present a number of outstanding challenges for theoretical physics and applied mathematics. The investigations will be carried out utilizing modern applied analysis, computation and numerical simulation with graduate students and postdoctoral researchers working under the direction of Principal Investigator Charles R. Doering at the University of Michigan. The project has three major components: . Mathematical methods previously developed by principal investigator and collaborators for the study of turbulent transport in the Navier-Stokes and related equations will be extended and applied to the advection-diffusion equation and turbulent mixing. This analysis will place limits on mixing efficiencies for passive scalar fields in terms of bulk and statistical features of the applied flows, and indicate key features of particularly efficient or inefficient stirring strategies. . Theoretical and mathematical issues in thermal convection will be studied via rigorous analysis and direct numerical simulation. Modern enhancements of the analytical techniques pioneered by the principal investigator will be developed and applied to open problems including homogeneous convection, Rayleigh-Benard convection with free-slip boundaries, infinite Prandtl number models and flows driven by internal heating with applications in geophysics. . The turbulent energy cascade and enstrophy generation will be investigated for solutions of the incompressible Navier-Stokes equations. Variational approaches capable of bounding turbulence driven by time-independent body-forces will be extended and applied to time-dependent and broadband (fractal) forcing. Work in progress will continute to determine maximum enstrophy generating flow-field configurations, how they are related to structures observed in fully developed turbulence, and their role in the development of singularities. With regard to the intellectual merit of this activity, knowledge gained from this project will contribute to fundamental understandings of mathematical models in fluid dynamics that are of direct relevance to many branches of applied science and engineering. In the long term this research wll aid the development of practical techniques for simulation, prediction and control of physical processes with applications ranging from meteorology to materials manufacturing. With regard to this activity's even broader impacts, there are several significant advanced training aspects to this project: it provides frontier dissertation research opportunities for graduate students in Michigan's Ph.D. program in Applied & Interdisciplinary Mathematics and support and guidance for postdoctoral researchers at the University of Michigan. This research also involves collaborations and interactions with investigators, including graduate students and postdoctoral researchers, from other institutions.
这项数学物理和应用分析的研究项目是研究流体力学偏微分方程解的定性和定量性质,包括Navier-Stokes方程。Navier-Stokes方程构成了流体流动的基本数学模型,其解被认为包含湍流。湍流输运和混合在应用物理科学和工程的许多领域有着重要的应用和影响,并对理论物理和应用数学提出了许多突出的挑战。研究将利用现代应用分析、计算和数值模拟进行,研究生和博士后研究人员在密歇根大学首席研究员查尔斯·R·多林的指导下工作。该项目有三个主要组成部分:。以前主要研究者和合作者为研究Navier-Stokes方程和相关方程中的湍流输运而发展的数学方法将被推广并应用于对流扩散方程和湍流混合。这一分析将根据所应用流动的体积和统计特征来限制被动标量场的混合效率,并指出特别有效或无效的搅拌策略的关键特征。。将通过严格的分析和直接的数值模拟来研究热对流的理论和数学问题。由首席研究人员开创的分析技术的现代改进将被发展并应用于开放问题,包括均匀对流、具有自由滑移边界的Rayleigh-Benard对流、无限普朗特数模型和内部加热驱动的流动,以及在地球物理中的应用。。对于不可压缩的Navier-Stokes方程的解,将研究湍流能量级联和拟能的产生。能够约束由与时间无关的体力驱动的湍流的变分方法将被扩展并应用于与时间相关的宽带(分形)强迫。正在进行的工作将继续确定最大拟能产生的流场构型,它们如何与在充分发展的湍流中观察到的结构相关,以及它们在奇点发展中的作用。关于这项活动的智力价值,从这一项目中获得的知识将有助于对流体力学数学模型的基本理解,这些模型与应用科学和工程的许多分支直接相关。从长远来看,这项研究将有助于开发实用的物理过程模拟、预测和控制技术,应用范围从气象学到材料制造。至于这项活动的更广泛影响,该项目还有几个重要的高级培训方面:它为密歇根应用与跨学科数学博士项目的研究生提供前沿论文研究机会,并为密歇根大学的博士后研究人员提供支持和指导。这项研究还涉及与研究人员的合作和互动,包括来自其他机构的研究生和博士后研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Doering其他文献

Charles Doering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Doering', 18)}}的其他基金

Systematic Search For Extreme and Singular Behavior in Some Fundamental Models of Fluid Mechanics
流体力学一些基本模型中的极端和奇异行为的系统搜索
  • 批准号:
    1515161
  • 财政年份:
    2015
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    1205219
  • 财政年份:
    2012
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
DynSyst_Special_Topics: Collaborative Research: Reduced Dynamical Descriptions of Infinite-Dimensional Nonlinear systems via a-Priori Basis Functions from Upper Bound Theories
DynSyst_Special_Topics:协作研究:通过上界理论的先验基函数简化无限维非线性系统的动态描述
  • 批准号:
    0927587
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Studies in Mathematical Physics: Advection, Convection and Turbulent Transport
数学物理研究:平流、对流和湍流传输
  • 批准号:
    0855335
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
FRG: Fluctuation Effects in Near-Continuum Descriptions of Discrete Dynamical Systems in Physics, Chemistry and Biology
FRG:物理、化学和生物学中离散动力系统近连续描述中的涨落效应
  • 批准号:
    0553487
  • 财政年份:
    2006
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Fronts, Fluctuations and Growth
前沿、波动和增长
  • 批准号:
    0244419
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    0244859
  • 财政年份:
    2003
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Applied Analysis of the Navier-Stokes and Related Equations
纳维-斯托克斯及相关方程的应用分析
  • 批准号:
    9900635
  • 财政年份:
    1999
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
  • 批准号:
    9709494
  • 财政年份:
    1997
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Stochastic Nonlinear Dynamics
随机非线性动力学
  • 批准号:
    9512741
  • 财政年份:
    1996
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401258
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235641
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235487
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
  • 批准号:
    2329854
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235311
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Study of deformation mechanism and mechanical properties of bundle structures based on collaboration between condensed matter physics and mathematical morphology
基于凝聚态物理与数学形态学协同的束结构变形机制与力学性能研究
  • 批准号:
    23H01299
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
  • 批准号:
    2235413
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了