All-Optical Magnonic Spin Torque Devices

全光学磁自旋扭矩装置

基本信息

  • 批准号:
    1515677
  • 负责人:
  • 金额:
    $ 12.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-13 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Intellectual merit: The research objectives of this proposal are to engineer a series of spin-transfer devices whose torque originates from thermally generated magnons. It has been predicted that such heat driven spin torque can lead to quantum yield improvements nearly two orders of magnitude greater than present state-of-the-art current-drive spin torque devices. Increasing the usable spin torque with all else constant will have a major impact on spin torque device technologies. Given the great potential, magnonic spin torque devices will be fabricated using a combination of thin film deposition and nanolithography techniques. Device structures will include magnetic oxide-normal metal-metallic ferromagnet spin valves. The operation and characterization of device performance will be entirely optical: ultrafast pump-probe time-resolved Magneto-Optical Kerr Effect to first excite magnons in the oxide, then observe the resulting magnetization dynamics in the metallic ferromagnet. The underlying principle of these devices is the transfer of spin momentum from magnons in a magnetic oxide to the magnetization of a free ferromagnetic layer. Magnons will be generated in the magnetic oxide layer (e.g., a spinel ferromagnet) by an femtosecond laser pulse. These magnons will annihilate at the oxide-normal metal interface (which may contain an additional layer of magnetic atoms), but their spin momentum will be transferred to conduction electrons in the normal metal. Thus, a time dependent accumulation of spin polarized electrons will be generated in the normal metal. The time derivative of this spin accumulation results in a torque on the metallic ferromagnet, which emphasizes the importance of using ultrafast optics. Device performance will be optimized through materials selection, creating and characterizing interfaces amenable to spin transfer, and investigating relevant length scales.Broader Impacts: The experimental realization of magnonic spin torque devices whose quantum yield is improved by nearly two orders of magnitude beyond the present state-of-the-art will have transformative impact by essentially creating a new class of spin torque devices. Spin-transfer torque devices in general would benefit from replacing the high current densities now necessary for operation, as this causes appreciable heating, and vortex nucleation in the free layer via the unavoidable Oersted field. Magnonic spin torque would address these issues, allowing significant improvements in device performance, fabrication requirements, and reliability. This program will integrate teaching and training of students by unifying techniques and ideas from physics, electrical engineering, and materials and optical sciences, thereby empowering them with the multidisciplinary talents necessary to become the next generation of leaders in academia and industry. An international collaboration will underscore the importance of global collaborations for modern research. The PIs will continue to build upon their established records of broadening the participation of underrepresented groups through a variety of means, including: mentoring students from USF?s Florida-Georgia Louis Stokes Alliance for Minority Participation Bridge to the Doctorate Program; educating the community about the disproportionate filtering of underrepresented groups by certain admissions policies; organizing summer camps for minority-serving middle schools in collaboration with the Florida Advanced Technological Education Center (FLATE), a NSF-ATE Regional Technological Education Center of Excellence. In collaboration with FLATE and the Hillsborough County School District, additional effort will help develop a science, technology, engineering, and math proficient workforce through training workshops for teachers.
智力优点:本计画的研究目标是设计一系列的自旋转移装置,其力矩来源于热产生的磁振子。据预测,这种热驱动的自旋扭矩可以导致量子产率的提高,比目前最先进的电流驱动自旋扭矩器件大近两个数量级。在其他条件不变的情况下增加可用的自旋扭矩将对自旋扭矩器件技术产生重大影响。鉴于巨大的潜力,磁振子自旋扭矩器件将使用薄膜沉积和纳米光刻技术相结合来制造。器件结构将包括磁性氧化物-正常金属-金属铁磁体自旋阀。器件性能的操作和表征将完全是光学的:超快泵浦-探测时间分辨磁光克尔效应首先激发氧化物中的磁振子,然后观察金属铁磁体中产生的磁化动力学。这些器件的基本原理是将自旋动量从磁性氧化物中的磁振子转移到自由铁磁层的磁化。磁振子将在磁性氧化物层中产生(例如,尖晶石铁磁体)。这些磁振子将在氧化物-正常金属界面(可能包含额外的磁性原子层)处湮灭,但它们的自旋动量将转移到正常金属中的传导电子。因此,在正常金属中将产生自旋极化电子的时间依赖性积累。这种自旋积累的时间导数导致金属铁磁体上的扭矩,这强调了使用超快光学的重要性。器件性能将通过材料的选择,创建和表征接口服从自旋转移,并调查相关的长度scales.Broader影响:磁子自旋力矩器件的量子产率提高了近两个数量级的实验实现超出了目前的最先进的将有变革性的影响,基本上创建一个新的一类自旋力矩器件。自旋转移扭矩装置通常将受益于替换现在操作所需的高电流密度,因为这会引起明显的加热,并且通过不可避免的奥斯特场在自由层中形成涡旋成核。磁自旋矩将解决这些问题,允许在器件性能,制造要求和可靠性的显着改善。该计划将通过统一物理,电气工程,材料和光学科学的技术和思想来整合学生的教学和培训,从而使他们能够成为学术界和工业界下一代领导者所需的多学科人才。国际合作将强调全球合作对现代研究的重要性。PI将继续建立在他们的既定记录,扩大通过各种手段,包括参与代表性不足的群体:指导学生从USF?的佛罗里达州-佐治亚州路易斯斯托克斯少数民族参与联盟桥梁博士学位课程;教育社会对某些招生政策的不成比例的过滤代表性不足的群体;组织夏令营为少数民族服务的中学与佛罗里达先进技术教育中心(FLATE),卓越的NSF-ATE区域技术教育中心合作。在与FLATE和希尔斯伯勒县学区的合作中,额外的努力将有助于通过教师培训讲习班培养一支精通科学、技术、工程和数学的劳动力队伍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Casey Miller其他文献

Outcomes associated with prolonged ECMO in COVID-19 associated ARDS: A single center experience.
与 COVID-19 相关 ARDS 延长 ECMO 相关的结果:单中心经验。
  • DOI:
    10.1177/02676591231184710
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Purav Shah;Casey Miller;Gustavo Parilla;Mani A Daneshmand;Christina Creel
  • 通讯作者:
    Christina Creel
The Handbook of Nonsexist Writing
无性别歧视写作手册
  • DOI:
  • 发表时间:
    1986
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casey Miller;K. Swift
  • 通讯作者:
    K. Swift

Casey Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Casey Miller', 18)}}的其他基金

NSF INCLUDES Alliance: Inclusive Graduate Education Network
NSF 包括联盟:包容性研究生教育网络
  • 批准号:
    1834516
  • 财政年份:
    2018
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Cooperative Agreement
Collaborative Research:IGE: Scaling Faculty Development to Broaden Participation in Graduate Education
合作研究:IGE:扩大教师发展以扩大研究生教育的参与
  • 批准号:
    1806705
  • 财政年份:
    2018
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
APS Graduate Education Conference; February 2017 in College Park, MD.
APS 研究生教育会议;
  • 批准号:
    1644885
  • 财政年份:
    2017
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Artificially Inhomogeneous Magnetic Materials
人工非均匀磁性材料
  • 批准号:
    1609066
  • 财政年份:
    2016
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-IGE: Deploying Holistic Admissions and Critical Support Structures to Increase Diversity and Retention of US Citizens in Physics Graduate Programs
合作研究:NRT-IGE:部署整体招生和关键支持结构,以增加美国公民在物理学研究生项目中的多样性和保留率
  • 批准号:
    1633275
  • 财政年份:
    2016
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
CAREER: Magnetocaloric Effect in Metallic Nanostructures
职业:金属纳米结构中的磁热效应
  • 批准号:
    1522927
  • 财政年份:
    2014
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Continuing Grant
All-Optical Magnonic Spin Torque Devices
全光学磁自旋扭矩装置
  • 批准号:
    1231929
  • 财政年份:
    2012
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
CAREER: Magnetocaloric Effect in Metallic Nanostructures
职业:金属纳米结构中的磁热效应
  • 批准号:
    0953733
  • 财政年份:
    2010
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Continuing Grant
Reflection-based Spintronics
基于反射的自旋电子学
  • 批准号:
    0820880
  • 财政年份:
    2008
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Continuing Grant

相似海外基金

Spin-Wave Dynamics in Yytrium Iron Garnet / Nanomagnet Hybrid Devices for Magnonic Computing
用于磁计算的钇铁石榴石/纳米磁体混合器件中的自旋波动力学
  • 批准号:
    22KF0283
  • 财政年份:
    2023
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spin wave non-reciprocity in magnonic crystals
磁振子晶体中的自旋波非互易性
  • 批准号:
    21K13886
  • 财政年份:
    2021
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of magnonic molecules based on spin cavitronics systems
基于自旋空电子系统的磁波分子设计
  • 批准号:
    20K14369
  • 财政年份:
    2020
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interacting Magnonic Currents and Chiral Spin Textures for Energy Efficient Spintronics
相互作用的磁流和手性自旋纹理实现节能自旋电子学
  • 批准号:
    410406067
  • 财政年份:
    2019
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Research Grants
Flow control of spin wave using two-dimensional magnonic crystals and application of integrated spin wave circuits
二维磁振子晶体自旋波流控及集成自旋波电路的应用
  • 批准号:
    19H00765
  • 财政年份:
    2019
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Formation of nano-optical magnonic crystals and its application to spin wave logic elements modulating light
纳米光学磁子晶体的形成及其在调制光的自旋波逻辑元件中的应用
  • 批准号:
    26706009
  • 财政年份:
    2014
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
  • 批准号:
    EP/L020696/1
  • 财政年份:
    2014
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Research Grant
Coherent spin waves for emerging nanoscale magnonic logic architectures
用于新兴纳米级磁波逻辑架构的相干自旋波
  • 批准号:
    EP/L019876/1
  • 财政年份:
    2014
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Research Grant
Spin Wave Excitations in Periodic Nanostructures: Evolution from Periodical Perturbations to Magnonic Crystals
周期性纳米结构中的自旋波激发:从周期性扰动到磁振子晶体的演化
  • 批准号:
    240276519
  • 财政年份:
    2013
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Research Grants
All-Optical Magnonic Spin Torque Devices
全光学磁自旋扭矩装置
  • 批准号:
    1231929
  • 财政年份:
    2012
  • 资助金额:
    $ 12.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了