Interacting Magnonic Currents and Chiral Spin Textures for Energy Efficient Spintronics
相互作用的磁流和手性自旋纹理实现节能自旋电子学
基本信息
- 批准号:410406067
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spintronics is one of the cutting-edge topics in condensed matter physics which aim to harness the spin degree of freedom of electrons for information science that has formed a new discipline - spintronics. Based on charge transport phenomena of spin polarized electrons, spintronics, has made its leap in data storage by providing extremely sensitive detectors in magnetic hard drives and turned out to be challenging to communicate spin information without great losses. On the other hand, magnonics which is so far a visionary concept, utilize magnons - the collective excitation of spins, as information carriers are advantageous for energy efficient electronics. Magnons are waves of the electrons’ spin precessional motion in magnetically ordered materials that propagate without actual charge transport and its associated Ohmic losses, paving the way for a substantial reduction of energy consumption in computers. Another exciting topic appeared recently in spintronics community is magnetic skyrmion. Magnetic skyrmions are topologically protected chiral spin textures with unique real-space topological properties and great potential in data storage. Aiming in taking advantages of these two topics: we propose to study the link between magnonics and skyrmionics for energy efficient spintronics.Our proposal is motivated by the facts that both magnons and chiral spin textures share a common ground set by the interplay of dipolar, spin-orbit and exchange energies rendering them perfect interaction partners. Magnons are fast, sensitive to the spins’ directions and easily driven far from equilibrium. Chiral spin textures are robust, non-volatile and still reprogrammable on ultrashort timescales. By using magnetron sputtering, phase/momentum resolved Brillouin light scattering (BLS) spectroscopy, spin sensitive imaging techniques, our strategy is the following: (I) we will utilize the asymmetric scattering between magnon (spin-wave) and chiral spin textures for optimizing the non-collinear Dzyaloshinskii-Moriya interaction and hence skyrmion materials, (II) we will fabricate nanoscale devices to test the mutual interaction between magnons and skyrmions, through which the novel phenomena such as magnonic spin transfer torque, magnonic topological Hall effect. A success of the proposed research could thus provide vast possibilities for combining the toolset of magnetic phenomena, adding important value to both magnonics and the fundamental understanding of complex topological spin textures and establish an avenue for energy efficient spintronics.
自旋电子学是凝聚态物理学的前沿课题之一,其目的是利用电子的自旋自由度为信息科学服务,形成了一门新的学科--自旋电子学。基于自旋极化电子的电荷输运现象,自旋电子学通过在磁性硬盘驱动器中提供极其灵敏的探测器而在数据存储方面取得了飞跃,并且在没有大的损失的情况下传递自旋信息是具有挑战性的。另一方面,到目前为止,磁振子是一个有远见的概念,利用磁振子-自旋的集体激发,作为信息载体,有利于节能电子学。磁振子是磁有序材料中电子自旋进动运动的波,其传播没有实际的电荷传输及其相关的欧姆损耗,为计算机中大幅降低能耗铺平了道路。最近自旋电子学界出现的另一个令人兴奋的话题是磁skyrmion。磁Skyrmions是一类拓扑保护的手征自旋织构,具有独特的实空间拓扑性质和巨大的数据存储潜力。我们的目标是利用这两个主题的优势:我们建议研究磁振子和Skyrmionics之间的联系,以获得节能的自旋电子学。我们的建议是由磁振子和手征自旋织构共享一个共同的基础设置的偶极,自旋轨道和交换能量的相互作用,使它们成为完美的相互作用伙伴。磁振子速度快,对自旋的方向很敏感,很容易被驱动到远离平衡的地方。手性自旋纹理是鲁棒的,非挥发性的,并且仍然可以在超短时间尺度上重新编程。通过使用磁控溅射,相位/动量分辨布里渊光散射(BLS)光谱,自旋敏感成像技术,我们的策略如下:(I)我们将利用磁振子之间的非对称散射(自旋波)和手性自旋织构,用于优化非共线的Dzyaloshinskiii-Moriya相互作用,从而优化skyrmion材料,(二)制备纳米尺度的磁振子和Skyrmion相互作用器件,研究磁振子自旋转移矩、磁振子拓扑霍尔效应等新现象。因此,拟议研究的成功可以为结合磁现象的工具集提供巨大的可能性,为磁振子学和复杂拓扑自旋纹理的基本理解增加重要价值,并为节能自旋电子学建立途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Helmut Schultheiß其他文献
Dr. Helmut Schultheiß的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Helmut Schultheiß', 18)}}的其他基金
Spin Waves bridging Spintronics and Photonics
自旋波桥接自旋电子学和光子学
- 批准号:
246011620 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似海外基金
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
- 批准号:
2420266 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Harnessing Magnonic Nonreciprocity Through Dissipation Engineering
通过耗散工程利用磁非互易性
- 批准号:
2337713 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Creation of a new-principle inductor "magnonic inductor" by magnetic excitation of magnetic insulators
通过磁绝缘体磁激励创建新原理电感器“磁振子电感器”
- 批准号:
23K17882 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Active antiferromagnetic materials for hosting hybrid magnonic functionalities
用于承载混合磁波函数的活性反铁磁材料
- 批准号:
2328787 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spin-Wave Dynamics in Yytrium Iron Garnet / Nanomagnet Hybrid Devices for Magnonic Computing
用于磁计算的钇铁石榴石/纳米磁体混合器件中的自旋波动力学
- 批准号:
22KF0283 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the hybrid quantum magnonic system for next-generation quantum information processing
研究下一代量子信息处理的混合量子磁力系统
- 批准号:
23KF0139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
MANNGA: MAGNONIC ARTIFICIAL NEURAL NETWORKS AND GATE ARRAYS
Mannga:磁力人工神经网络和门阵列
- 批准号:
10039217 - 财政年份:2022
- 资助金额:
-- - 项目类别:
EU-Funded
Quantum theory on the magnonic Wiedemann-Franz law
波波子维德曼-弗朗茨定律的量子理论
- 批准号:
22K03519 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)